Advertisement

Journal of High Energy Physics

, 2018:35 | Cite as

Bottom-quark effects in Higgs production at intermediate transverse momentum

  • Fabrizio CaolaEmail author
  • Jonas M. Lindert
  • Kirill Melnikov
  • Pier Francesco Monni
  • Lorenzo Tancredi
  • Christopher Wever
Open Access
Regular Article - Theoretical Physics

Abstract

We provide a precise description of the Higgs boson transverse momentum distribution including top and bottom quark contributions, that is valid for transverse momenta in the range mb ≲ p ≲ mt, where mb and mt are the bottom and top quark masses. This description is based on a combination of fixed next-to-leading order (NLO) results with next-to-next-to-leading logarithmic (NNLL) transverse momentum resummation. We show that ambiguities in the resummation procedure for the b-quark loops are of the same order as the related fixed-order uncertainties. We conclude that the current uncertainty in the top-bottom interference contribution to the Higgs transverse momentum spectrum is \( \mathcal{O}\left(20\%\right) \).

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  2. [2]
    F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining light-quark Yukawa couplings from Higgs distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Anastasiou et al., Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
  6. [6]
    F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N 3 LO beyond threshold, JHEP 01 (2018) 145 [arXiv:1710.03016] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Boughezal et al., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].
  8. [8]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].
  9. [9]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].
  10. [10]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].
  11. [11]
    X. Chen et al., NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].
  13. [13]
    A. Pak, M. Rogal and M. Steinhauser, Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders, JHEP 09 (2011) 088 [arXiv:1107.3391] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].
  16. [16]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, JHEP 11 (2014) 150 [arXiv:1408.6836] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Neumann and C. Williams, The Higgs boson at high p T , Phys. Rev. D 95 (2017) 014004 [arXiv:1609.00367] [INSPIRE].
  18. [18]
    J.M. Lindert, K. Kudashkin, K. Melnikov and C. Wever, Higgs bosons with large transverse momentum at the LHC, Phys. Lett. B 782 (2018) 210 [arXiv:1801.08226] [INSPIRE].
  19. [19]
    T. Neumann, NLO Higgs+jet at Large Transverse Momenta Including Top Quark Mass Effects, arXiv:1802.02981 [INSPIRE].
  20. [20]
    S.P. Jones, M. Kerner and G. Luisoni, Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].
  21. [21]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
  22. [22]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation effects in the H → 2γ, HW Wlνlν and HZZ →4l decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE].
  24. [24]
    T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE].
  26. [26]
    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
  28. [28]
    A.A. Vladimirov, Correspondence between soft and rapidity anomalous dimensions, Phys. Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].
  29. [29]
    W. Bizon et al., Momentum-space resummation for transverse observables and the Higgs p at N 3 LL+NNLO, JHEP 02 (2018) 108 [arXiv:1705.09127] [INSPIRE].
  30. [30]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].
  31. [31]
    W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [INSPIRE].
  32. [32]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop ggHg amplitude mediated by a nearly massless quark, JHEP 11 (2016) 104 [arXiv:1610.03747] [INSPIRE].
  33. [33]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop amplitudes for qgHq and \( q\overline{q}\to Hg \) mediated by a nearly massless quark, Phys. Rev. D 95 (2017) 054012 [arXiv:1702.00426] [INSPIRE].
  34. [34]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.M. Lindert, K. Melnikov, L. Tancredi and C. Wever, Top-bottom interference effects in Higgs plus jet production at the LHC, Phys. Rev. Lett. 118 (2017) 252002 [arXiv:1703.03886] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Parisi and R. Petronzio, Small transverse momentum distributions in hard processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].
  38. [38]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].
  39. [39]
    K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E. Bagnaschi and A. Vicini, The Higgs transverse momentum distribution in gluon fusion as a multiscale problem, JHEP 01 (2016) 056 [arXiv:1505.00735] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Bagnaschi et al., Resummation ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond, JHEP 01 (2016) 090 [arXiv:1510.08850] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Melnikov and A. Penin, On the light quark mass effects in Higgs boson production in gluon fusion, JHEP 05 (2016) 172 [arXiv:1602.09020] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Liu and A.A. Penin, High-energy limit of QCD beyond the Sudakov approximation, Phys. Rev. Lett. 119 (2017) 262001 [arXiv:1709.01092] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. Caola, S. Forte, S. Marzani, C. Muselli and G. Vita, The Higgs transverse momentum spectrum with finite quark masses beyond leading order, JHEP 08 (2016) 150 [arXiv:1606.04100] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].
  46. [46]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
  47. [47]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  48. [48]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Cascioli, J.M. Lindert, P. Maierhöfer and S. Pozzorini, The OpenLoops one-loop generator, publicly available at http://openloops.hepforge.org.
  50. [50]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    T. Ježo and P. Nason, On the treatment of resonances in next-to-leading order calculations matched to a parton shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSGoogle Scholar
  53. [53]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
  54. [54]
    F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P.F. Monni, E. Re and P. Torrielli, Higgs transverse-momentum resummation in direct space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  57. [57]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  58. [58]
    C. Anastasiou et al., Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Fabrizio Caola
    • 1
    Email author
  • Jonas M. Lindert
    • 1
  • Kirill Melnikov
    • 3
  • Pier Francesco Monni
    • 2
  • Lorenzo Tancredi
    • 2
  • Christopher Wever
    • 3
    • 4
  1. 1.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  2. 2.TH Division, Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Institute for Theoretical Particle Physics (TTP), KITKarlsruheGermany
  4. 4.Institut für Kernphysik, KITEggenstein-LeopoldshafenGermany

Personalised recommendations