Advertisement

Journal of High Energy Physics

, 2018:23 | Cite as

Four-point functions of all-different-weight chiral primary operators in the supergravity approximation

  • Gleb Arutyunov
  • Rob KlabbersEmail author
  • Sergei Savin
Open Access
Regular Article - Theoretical Physics

Abstract

Recently a Mellin-space formula was conjectured for the form of correlation functions of 1/2 BPS operators in planar \( \mathcal{N}=4 \) SYM in the strong ’t Hooft coupling limit. In this work we report on the computation of two previously unknown four-point functions of operators with weights 〈2345〉 and 〈3456〉, from the effective type-IIB supergravity action using AdS/CFT. These correlators are novel: they are the first correlators with all different weights and in particular 〈3456〉 is the first next-next-next-to-extremal correlator to ever have been computed. We also present simplifications of the known algorithm, without which these computations could not have been executed. These simplifications consist of a direct formula for the exchange part and for the contact part of the correlation function, as well as a simplification of the C tensor algorithm to compute a tensors. After bringing our results in the appropriate form we successfully corroborate the recently conjectured formula.

Keywords

AdS-CFT Correspondence Conformal Field Theory Integrable Field Theories Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F.A. Dolan, M. Nirschl and H. Osborn, Conjectures for large N superconformal N = 4 chiral primary four point functions, Nucl. Phys. B 749 (2006) 109 [hep-th/0601148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. Arutyunov, S. Frolov, R. Klabbers and S. Savin, Towards 4-point correlation functions of any \( \frac{1}{2} \) -BPS operators from supergravity, JHEP 04 (2017) 005 [arXiv:1701.00998] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G.E. Arutyunov and S.A. Frolov, Quadratic action for Type IIB supergravity on AdS 5 × S 5, JHEP 08 (1999) 024 [hep-th/9811106] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three point functions in SYM(4) at large N, Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Arutyunov and S. Frolov, Scalar quartic couplings in type IIB supergravity on AdS 5 × S 5, Nucl. Phys. B 579 (2000) 117 [hep-th/9912210] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G. Arutyunov and E. Sokatchev, On a large N degeneracy in N = 4 SYM and the AdS/CFT correspondence, Nucl. Phys. B 663 (2003) 163 [hep-th/0301058] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L. Berdichevsky and P. Naaijkens, Four-point functions of different-weight operators in the AdS/CFT correspondence, JHEP 01 (2008) 071 [arXiv:0709.1365] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    L.I. Uruchurtu, Four-point correlators with higher weight superconformal primaries in the AdS/CFT Correspondence, JHEP 03 (2009) 133 [arXiv:0811.2320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L.I. Uruchurtu, Next-next-to-extremal Four Point Functions of N = 4 1/2 BPS Operators in the AdS/CFT Correspondence, JHEP 08 (2011) 133 [arXiv:1106.0630] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G.P. Korchemsky and E. Sokatchev, Four-point correlation function of stress-energy tensors in \( \mathcal{N}=4 \) superconformal theories, JHEP 12 (2015) 133 [arXiv:1504.07904] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    L.F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS 5 × S 5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Unmixing Supergravity, JHEP 02 (2018) 133 [arXiv:1706.08456] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Loop corrections for Kaluza-Klein AdS amplitudes, JHEP 05 (2018) 056 [arXiv:1711.03903] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    F. Aprile, J. Drummond, P. Heslop and H. Paul, The double-trace spectrum of N = 4 SYM at strong coupling, arXiv:1802.06889 [INSPIRE].
  24. [24]
    G. Arutyunov and S. Frolov, On the correspondence between gravity fields and CFT operators, JHEP 04 (2000) 017 [hep-th/0003038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, All three-loop four-point correlators of half-BPS operators in planar \( \mathcal{N}=4 \) SYM, JHEP 08 (2016) 053 [arXiv:1512.02926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B 607 (2001) 191 [hep-th/0009106] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d)/AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS d+1, Nucl. Phys. B 550 (1999) 261 [hep-th/9811257] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, A new double scaling limit of N = 4 super Yang-Mills theory and PP wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Zentrum für Mathematische PhysikUniversität HamburgHamburgGermany

Personalised recommendations