Journal of High Energy Physics

, 2018:22 | Cite as

Neutrino signatures in primordial non-gaussianities

  • Xingang Chen
  • Yi Wang
  • Zhong-Zhi Xianyu
Open Access
Regular Article - Theoretical Physics


We study the cosmological collider phenomenology of neutrinos in an effective field theory. The mass spectrum of neutrinos and their characteristic oscillatory signatures in the squeezed limit bispectrum are computed. Both dS-covariant and slow-roll corrections are considered, so is the scenario of electroweak symmetry breaking during inflation. Interestingly, we show that the slow-roll background of the inflaton provides a chemical potential for the neutrino production. The chemical potential greatly amplifies the oscillatory signal and makes the signal observably large for heavy neutrinos without the need of fine tuning.


Cosmology of Theories beyond the SM Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    X. Chen and Y. Wang, Large non-gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].ADSGoogle Scholar
  2. [2]
    X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  4. [4]
    V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Sefusatti, J.R. Fergusson, X. Chen and E.P.S. Shellard, Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background, JCAP 08 (2012) 033 [arXiv:1204.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Norena, L. Verde, G. Barenboim and C. Bosch, Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias, JCAP 08 (2012) 019 [arXiv:1204.6324] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Emami, Spectroscopy of masses and couplings during inflation, JCAP 04 (2014) 031 [arXiv:1311.0184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Kehagias and A. Riotto, High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys. 63 (2015) 531 [arXiv:1501.03515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  13. [13]
    E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of massive primordial fields on large-scale structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to standard model fields in inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. Lee, D. Baumann and G.L. Pimentel, Non-gaussianity as a particle detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model background of the cosmological collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model mass spectrum in inflationary universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Kehagias and A. Riotto, On the inflationary perturbations of massive higher-spin fields, JCAP 07 (2017) 046 [arXiv:1705.05834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi single field inflation in the non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly Coupled Quasi-Single Field Inflation, JCAP 01 (2018) 041 [arXiv:1710.03054] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-Gaussian Enhancements of Galactic Halo Correlations in Quasi-Single Field Inflation, Phys. Rev. D 97 (2018) 123528 [arXiv:1711.02667] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Franciolini, A. Kehagias and A. Riotto, Imprints of spinning particles on primordial cosmological perturbations, JCAP 02 (2018) 023 [arXiv:1712.06626] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP 06 (2018) 013 [arXiv:1801.05688] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Moradinezhad Dizgah, H. Lee, J.B. Muñoz and C. Dvorkin, Galaxy bispectrum from massive spinning particles, JCAP 05 (2018) 013 [arXiv:1801.07265] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Saito, Cosmological correlation functions including a massive scalar field and an arbitrary number of soft-gravitons, Ph.D. thesis, Osaka University, Osaka, Japan (2018), arXiv:1803.01287 [INSPIRE].
  28. [28]
    G. Franciolini, A. Kehagias, A. Riotto and M. Shiraishi, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev. D 98 (2018) 043533 [arXiv:1803.03814] [INSPIRE].Google Scholar
  29. [29]
    X. Chen et al., Quantum standard clocks in the primordial trispectrum, JCAP 05 (2018) 049 [arXiv:1803.04412] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Saito and T. Kubota, Heavy particle signatures in cosmological correlation functions with tensor modes, JCAP 06 (2018) 009 [arXiv:1804.06974] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421.Google Scholar
  32. [32]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  33. [33]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X. Chen, Primordial features as evidence for inflation, JCAP 01 (2012) 038 [arXiv:1104.1323] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    X. Chen, Fingerprints of primordial universe paradigms as features in density perturbations, Phys. Lett. B 706 (2011) 111 [arXiv:1106.1635] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    X. Chen and C. Ringeval, Searching for standard clocks in the primordial universe, JCAP 08 (2012) 014 [arXiv:1205.6085] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    X. Chen and M.H. Namjoo, Standard clock in primordial density perturbations and cosmic microwave background, Phys. Lett. B 739 (2014) 285 [arXiv:1404.1536] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    X. Chen, M.H. Namjoo and Y. Wang, Models of the primordial standard clock, JCAP 02 (2015) 027 [arXiv:1411.2349] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].ADSGoogle Scholar
  41. [41]
    X. Chen, M.H. Namjoo and Y. Wang, Probing the primordial universe using massive fields, Int. J. Mod. Phys. D 26 (2016) 1740004 [arXiv:1601.06228] [INSPIRE].ADSGoogle Scholar
  42. [42]
    X. Chen, M.H. Namjoo and Y. Wang, A direct probe of the evolutionary history of the primordial universe, Sci. China Phys. Mech. Astron. 59 (2016) 101021 [arXiv:1608.01299] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    M. Srednicki, Quantum field theory, Cambridge University Press, Cambridge U.K. (2007).CrossRefzbMATHGoogle Scholar
  44. [44]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    B. Allen and C.A. Lütken, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys. 106 (1986) 201 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP 11 (2015) 021 [arXiv:1508.00891] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Adshead et al., Phenomenology of fermion production during axion inflation, JCAP 06 (2018) 020 [arXiv:1803.04501] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
  50. [50]
    X. Chen, Primordial non-gaussianities from inflation models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Wang, Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Theory and ComputationHarvard-Smithsonian Center for AstrophysicsCambridgeU.S.A.
  2. 2.Department of PhysicsThe Hong Kong University of Science and TechnologyKowloonP.R. China
  3. 3.Jockey Club Institute for Advanced StudyThe Hong Kong University of Science and TechnologyKowloonP.R. China
  4. 4.Center of Mathematical Sciences and ApplicationsHarvard UniversityCambridgeU.S.A.
  5. 5.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations