Advertisement

Journal of High Energy Physics

, 2018:11 | Cite as

All rational one-loop Einstein-Yang-Mills amplitudes at four points

  • Dhritiman NandanEmail author
  • Jan Plefka
  • Gabriele Travaglini
Open Access
Regular Article - Theoretical Physics

Abstract

All four-point mixed gluon-graviton amplitudes in pure Einstein-Yang-Mills theory with at most one state of negative helicity are computed at one-loop order and maximal powers of the gauge coupling, using D-dimensional generalized unitarity. The resulting purely rational expressions take very compact forms. We comment on the color-kinematics duality and a relation to collinear limits of pure gluon amplitudes.

Keywords

Scattering Amplitudes Effective Field Theories Supergravity Models Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.T. Grisaru and H.N. Pendleton, Some Properties of Scattering Amplitudes in Supersymmetric Theories, Nucl. Phys. B 124 (1977) 81 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [INSPIRE].
  3. [3]
    Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N-gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett. 72 (1994) 2134 [hep-ph/9312333] [INSPIRE].
  4. [4]
    G. Mahlon, One loop multi-photon helicity amplitudes, Phys. Rev. D 49 (1994) 2197 [hep-ph/9311213] [INSPIRE].
  5. [5]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, U.S.A., June 4-30, 1995, pp. 539-584, hep-ph/9601359 [INSPIRE].
  6. [6]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press, (2015).Google Scholar
  7. [7]
    J.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lect. Notes Phys. 883 (2014) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    W.A. Bardeen, Selfdual Yang-Mills theory, integrability and multiparton amplitudes, in From the standard model to grand unified theories. Proceedings, 6th Yukawa International Seminar, YKIS’95, Kyoto, Japan, August 21-25, 1995, pp. 1-8, Prog. Theor. Phys. Suppl. 123 (1996) 1 [INSPIRE].
  9. [9]
    G. Chalmers and W. Siegel, The self-dual sector of QCD amplitudes, Phys. Rev. D 54 (1996) 7628 [hep-th/9606061] [INSPIRE].
  10. [10]
    D. Cangemi, Selfdual Yang-Mills theory and one loop like-helicity QCD multi-gluon amplitudes, Nucl. Phys. B 484 (1997) 521 [hep-th/9605208] [INSPIRE].
  11. [11]
    G. Mahlon, Multi-gluon helicity amplitudes involving a quark loop, Phys. Rev. D 49 (1994) 4438 [hep-ph/9312276] [INSPIRE].
  12. [12]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].
  13. [13]
    S.D. Alston, D.C. Dunbar and W.B. Perkins, n-point amplitudes with a single negative-helicity graviton, Phys. Rev. D 92 (2015) 065024 [arXiv:1507.08882] [INSPIRE].
  14. [14]
    D.C. Dunbar, J.H. Ettle and W.B. Perkins, Augmented Recursion For One-loop Gravity Amplitudes, JHEP 06 (2010) 027 [arXiv:1003.3398] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].
  16. [16]
    D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014] [INSPIRE].
  17. [17]
    A. Brandhuber, S. McNamara, B. Spence and G. Travaglini, Recursion relations for one-loop gravity amplitudes, JHEP 03 (2007) 029 [hep-th/0701187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    K.G. Selivanov, SD perturbiner in Yang-Mills + gravity, Phys. Lett. B 420 (1998) 274 [hep-th/9710197] [INSPIRE].
  19. [19]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].
  20. [20]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  23. [23]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
  24. [24]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in \( \mathcal{N}=2 \) Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].
  25. [25]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously Broken Yang-Mills-Einstein Supergravities as Double Copies, JHEP 06 (2017) 064 [arXiv:1511.01740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Chiodaroli, Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities, arXiv:1607.04129 [INSPIRE].
  27. [27]
    S. Stieberger and T.R. Taylor, New relations for Einstein-Yang-Mills amplitudes, Nucl. Phys. B 913 (2016) 151 [arXiv:1606.09616] [INSPIRE].
  28. [28]
    D. Nandan, J. Plefka, O. Schlotterer and C. Wen, Einstein-Yang-Mills from pure Yang-Mills amplitudes, JHEP 10 (2016) 070 [arXiv:1607.05701] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    L. de la Cruz, A. Kniss and S. Weinzierl, Relations for Einstein-Yang-Mills amplitudes from the CHY representation, Phys. Lett. B 767 (2017) 86 [arXiv:1607.06036] [INSPIRE].
  30. [30]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit Formulae for Yang-Mills-Einstein Amplitudes from the Double Copy, JHEP 07 (2017) 002 [arXiv:1703.00421] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C.-H. Fu, Y.-J. Du, R. Huang and B. Feng, Expansion of Einstein-Yang-Mills Amplitude, JHEP 09 (2017) 021 [arXiv:1702.08158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    F. Teng and B. Feng, Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame, JHEP 05 (2017) 075 [arXiv:1703.01269] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Y.-J. Du, B. Feng and F. Teng, Expansion of All Multitrace Tree Level EYM Amplitudes, JHEP 12 (2017) 038 [arXiv:1708.04514] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].
  35. [35]
    L.J. Dixon, J.M. Henn, J. Plefka and T. Schuster, All tree-level amplitudes in massless QCD, JHEP 01 (2011) 035 [arXiv:1010.3991] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    J.L. Bourjaily, Efficient Tree-Amplitudes in N = 4: Automatic BCFW Recursion in Mathematica, arXiv:1011.2447 [INSPIRE].
  37. [37]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].
  38. [38]
    A. Brandhuber, S. McNamara, B.J. Spence and G. Travaglini, Loop amplitudes in pure Yang-Mills from generalised unitarity, JHEP 10 (2005) 011 [hep-th/0506068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP 07 (2005) 025 [hep-th/0504159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    T. Schuster, Lee-Wick Gauge Theory and Effective Quantum Gravity, Diploma thesis, Humboldt University Berlin, Germany (2008), http://qft.physik.hu-berlin.de.
  41. [41]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
  42. [42]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  45. [45]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
  46. [46]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  47. [47]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  48. [48]
    S. Stieberger and T.R. Taylor, Graviton Amplitudes from Collinear Limits of Gauge Amplitudes, Phys. Lett. B 744 (2015) 160 [arXiv:1502.00655] [INSPIRE].
  49. [49]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
  50. [50]
    S. He and E.Y. Yuan, One-loop Scattering Equations and Amplitudes from Forward Limit, Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].
  51. [51]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].
  54. [54]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Dhritiman Nandan
    • 1
    Email author
  • Jan Plefka
    • 2
    • 3
  • Gabriele Travaglini
    • 4
  1. 1.Higgs Centre for Theoretical Physics, School of Physics and AstronomyThe University of EdinburghEdinburghUnited Kingdom
  2. 2.Institut für Physik und IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  4. 4.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations