Journal of High Energy Physics

, 2017:157 | Cite as

Machine learning in the string landscape

  • Jonathan Carifio
  • James HalversonEmail author
  • Dmitri Krioukov
  • Brent D. Nelson
Open Access
Regular Article - Theoretical Physics


We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of \( \frac{4}{3}\times 2.96\times {10}^{755} \) F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.


D-branes F-Theory Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. Taylor and Y.-N. Wang, The F-theory geometry with most flux vacua, JHEP 12 (2015) 164 [arXiv:1511.03209] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    J. Halverson, C. Long and B. Sung, On Algorithmic Universality in F-theory Compactifications, arXiv:1706.02299 [INSPIRE].
  6. [6]
    F. Denef and M.R. Douglas, Computational complexity of the landscape. I., Annals Phys. 322 (2007) 1096 [hep-th/0602072] [INSPIRE].
  7. [7]
    M. Cvetič, I. Garcia-Etxebarria and J. Halverson, On the computation of non-perturbative effective potentials in the string theory landscape: IIB/F-theory perspective, Fortsch. Phys. 59 (2011) 243 [arXiv:1009.5386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    F. Denef, M.R. Douglas, B. Greene and C. Zukowski, Computational complexity of the landscape II — Cosmological considerations, arXiv:1706.06430 [INSPIRE].
  9. [9]
    N. Bao, R. Bousso, S. Jordan and B. Lackey, Fast optimization algorithms and the cosmological constant, arXiv:1706.08503 [INSPIRE].
  10. [10]
    Y.-H. He, Deep-Learning the Landscape, arXiv:1706.02714 [INSPIRE].
  11. [11]
    F. Ruehle, Evolving neural networks with genetic algorithms to study the String Landscape, JHEP 08 (2017) 038 [arXiv:1706.07024] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Krefl and R.-K. Seong, Machine Learning of Calabi-Yau Volumes, arXiv:1706.03346 [INSPIRE].
  13. [13]
    T. Mitchell, Machine Learning, McGraw-Hill (1997).Google Scholar
  14. [14]
    C. Bishop, Pattern Recognition and Machine Learning, Springer Publishing Company (2006).Google Scholar
  15. [15]
    M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 847 [hep-th/9805190] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. Halverson and J. Tian, Cost of seven-brane gauge symmetry in a quadrillion F-theory compactifications, Phys. Rev. D 95 (2017) 026005 [arXiv:1610.08864] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  19. [19]
    N. Nakayama, On Weierstrass models, in Algebraic geometry and commutative algebra. Volume II, Kinokuniya, Tokyo Japan (1988), pp. 405–431.Google Scholar
  20. [20]
    L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP 08 (2014) 025 [arXiv:1405.2074] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and Spectral Covers from Resolved Calabi-Yau’s, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and Higher Codimension Fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki, Box Graphs and Singular Fibers, JHEP 05 (2014) 048 [arXiv:1402.2653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions I, Nucl. Phys. B 905 (2016) 447 [arXiv:1407.3520] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions II: From Coulomb Phases to Fiber Faces, Nucl. Phys. B 905 (2016) 480 [arXiv:1511.01801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Grassi, J. Halverson and J.L. Shaneson, Matter From Geometry Without Resolution, JHEP 10 (2013) 205 [arXiv:1306.1832] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Grassi, J. Halverson and J.L. Shaneson, Non-Abelian Gauge Symmetry and the Higgs Mechanism in F-theory, Commun. Math. Phys. 336 (2015) 1231 [arXiv:1402.5962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Grassi, J. Halverson and J.L. Shaneson, Geometry and Topology of String Junctions, arXiv:1410.6817 [INSPIRE].
  29. [29]
    A. Grassi, J. Halverson, F. Ruehle and J.L. Shaneson, Dualities of Deformed \( \mathcal{N}=2 \) SCFTs from Link Monodromy on D3-brane States, arXiv:1611.01154 [INSPIRE].
  30. [30]
    D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].ADSzbMATHGoogle Scholar
  31. [31]
    A. Grassi, J. Halverson, J. Shaneson and W. Taylor, Non-Higgsable QCD and the Standard Model Spectrum in F-theory, JHEP 01 (2015) 086 [arXiv:1409.8295] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A.P. Braun and T. Watari, The Vertical, the Horizontal and the Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications, JHEP 01 (2015) 047 [arXiv:1408.6167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    T. Watari, Statistics of F-theory flux vacua for particle physics, JHEP 11 (2015) 065 [arXiv:1506.08433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Halverson, Strong Coupling in F-theory and Geometrically Non-Higgsable Seven-branes, Nucl. Phys. B 919 (2017) 267 [arXiv:1603.01639] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    J. Halverson and W. Taylor, \( {\mathrm{\mathbb{P}}}^1 \) -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models, JHEP 09 (2015) 086 [arXiv:1506.03204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    W. Taylor and Y.-N. Wang, A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua, JHEP 01 (2016) 137 [arXiv:1510.04978] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    D.R. Morrison and W. Taylor, Non-Higgsable clusters for 4D F-theory models, JHEP 05 (2015) 080 [arXiv:1412.6112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    W. Taylor, On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP 08 (2012) 032 [arXiv:1205.0952] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  41. [41]
    G. Martini and W. Taylor, 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP 06 (2015) 061 [arXiv:1404.6300] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S.B. Johnson and W. Taylor, Calabi-Yau threefolds with large h 2,1, JHEP 10 (2014) 23 [arXiv:1406.0514] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Taylor and Y.-N. Wang, Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua, arXiv:1504.07689 [INSPIRE].
  44. [44]
    J.A. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms and Applications, 1st edition, Springer Publishing Company (2010).Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Jonathan Carifio
    • 1
  • James Halverson
    • 1
    Email author
  • Dmitri Krioukov
    • 1
    • 2
    • 3
  • Brent D. Nelson
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBostonU.S.A.
  2. 2.Department of MathematicsNortheastern UniversityBostonU.S.A.
  3. 3.Department of Electrical and Computer EngineeringNortheastern UniversityBostonU.S.A.

Personalised recommendations