# Machine learning in the string landscape

- 289 Downloads
- 8 Citations

## Abstract

We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of \( \frac{4}{3}\times 2.96\times {10}^{755} \) F-theory compactifications. Logistic regression generates a new conjecture for when *E* _{6} arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

## Keywords

D-branes F-Theory Superstring Vacua## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]R. Bousso and J. Polchinski,
*Quantization of four form fluxes and dynamical neutralization of the cosmological constant*,*JHEP***06**(2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [2]S. Ashok and M.R. Douglas,
*Counting flux vacua*,*JHEP***01**(2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [3]F. Denef and M.R. Douglas,
*Distributions of flux vacua*,*JHEP***05**(2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [4]W. Taylor and Y.-N. Wang,
*The F-theory geometry with most flux vacua*,*JHEP***12**(2015) 164 [arXiv:1511.03209] [INSPIRE].ADSMathSciNetGoogle Scholar - [5]J. Halverson, C. Long and B. Sung,
*On Algorithmic Universality in F-theory Compactifications*, arXiv:1706.02299 [INSPIRE]. - [6]F. Denef and M.R. Douglas,
*Computational complexity of the landscape. I.*,*Annals Phys.***322**(2007) 1096 [hep-th/0602072] [INSPIRE]. - [7]M. Cvetič, I. Garcia-Etxebarria and J. Halverson,
*On the computation of non-perturbative effective potentials in the string theory landscape: IIB/F-theory perspective*,*Fortsch. Phys.***59**(2011) 243 [arXiv:1009.5386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [8]F. Denef, M.R. Douglas, B. Greene and C. Zukowski,
*Computational complexity of the landscape II — Cosmological considerations*, arXiv:1706.06430 [INSPIRE]. - [9]N. Bao, R. Bousso, S. Jordan and B. Lackey,
*Fast optimization algorithms and the cosmological constant*, arXiv:1706.08503 [INSPIRE]. - [10]
- [11]F. Ruehle,
*Evolving neural networks with genetic algorithms to study the String Landscape*,*JHEP***08**(2017) 038 [arXiv:1706.07024] [INSPIRE].ADSCrossRefGoogle Scholar - [12]
- [13]T. Mitchell,
*Machine Learning*, McGraw-Hill (1997).Google Scholar - [14]C. Bishop,
*Pattern Recognition and Machine Learning*, Springer Publishing Company (2006).Google Scholar - [15]M. Kreuzer and H. Skarke,
*Classification of reflexive polyhedra in three-dimensions*,*Adv. Theor. Math. Phys.***2**(1998) 847 [hep-th/9805190] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [16]J. Halverson and J. Tian,
*Cost of seven-brane gauge symmetry in a quadrillion F-theory compactifications*,*Phys. Rev.***D 95**(2017) 026005 [arXiv:1610.08864] [INSPIRE].ADSGoogle Scholar - [17]C. Vafa,
*Evidence for F-theory*,*Nucl. Phys.***B 469**(1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [18]D.R. Morrison and C. Vafa,
*Compactifications of F-theory on Calabi-Yau threefolds. 2.*,*Nucl. Phys.***B 476**(1996) 437 [hep-th/9603161] [INSPIRE]. - [19]N. Nakayama,
*On Weierstrass models*, in*Algebraic geometry and commutative algebra. Volume II*, Kinokuniya, Tokyo Japan (1988), pp. 405–431.Google Scholar - [20]L.B. Anderson and W. Taylor,
*Geometric constraints in dual F-theory and heterotic string compactifications*,*JHEP***08**(2014) 025 [arXiv:1405.2074] [INSPIRE].ADSCrossRefGoogle Scholar - [21]J. Marsano and S. Schäfer-Nameki,
*Yukawas, G-flux and Spectral Covers from Resolved Calabi-Yau’s*,*JHEP***11**(2011) 098 [arXiv:1108.1794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [22]C. Lawrie and S. Schäfer-Nameki,
*The Tate Form on Steroids: Resolution and Higher Codimension Fibers*,*JHEP***04**(2013) 061 [arXiv:1212.2949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [23]H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki,
*Box Graphs and Singular Fibers*,*JHEP***05**(2014) 048 [arXiv:1402.2653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [24]A.P. Braun and S. Schäfer-Nameki,
*Box Graphs and Resolutions I*,*Nucl. Phys.***B 905**(2016) 447 [arXiv:1407.3520] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [25]A.P. Braun and S. Schäfer-Nameki,
*Box Graphs and Resolutions II: From Coulomb Phases to Fiber Faces*,*Nucl. Phys.***B 905**(2016) 480 [arXiv:1511.01801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [26]A. Grassi, J. Halverson and J.L. Shaneson,
*Matter From Geometry Without Resolution*,*JHEP***10**(2013) 205 [arXiv:1306.1832] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]A. Grassi, J. Halverson and J.L. Shaneson,
*Non-Abelian Gauge Symmetry and the Higgs Mechanism in F-theory*,*Commun. Math. Phys.***336**(2015) 1231 [arXiv:1402.5962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [28]A. Grassi, J. Halverson and J.L. Shaneson,
*Geometry and Topology of String Junctions*, arXiv:1410.6817 [INSPIRE]. - [29]A. Grassi, J. Halverson, F. Ruehle and J.L. Shaneson,
*Dualities of Deformed*\( \mathcal{N}=2 \)*SCFTs from Link Monodromy on D3-brane States*, arXiv:1611.01154 [INSPIRE]. - [30]D.R. Morrison and W. Taylor,
*Classifying bases for*6*D F-theory models*,*Central Eur. J. Phys.***10**(2012) 1072 [arXiv:1201.1943] [INSPIRE].ADSzbMATHGoogle Scholar - [31]A. Grassi, J. Halverson, J. Shaneson and W. Taylor,
*Non-Higgsable QCD and the Standard Model Spectrum in F-theory*,*JHEP***01**(2015) 086 [arXiv:1409.8295] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [32]A.P. Braun and T. Watari,
*The Vertical, the Horizontal and the Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications*,*JHEP***01**(2015) 047 [arXiv:1408.6167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [33]T. Watari,
*Statistics of F-theory flux vacua for particle physics*,*JHEP***11**(2015) 065 [arXiv:1506.08433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [34]J. Halverson,
*Strong Coupling in F-theory and Geometrically Non-Higgsable Seven-branes*,*Nucl. Phys.***B 919**(2017) 267 [arXiv:1603.01639] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [35]J. Halverson and W. Taylor, \( {\mathrm{\mathbb{P}}}^1 \)
*-bundle bases and the prevalence of non-Higgsable structure in*4*D F-theory models*,*JHEP***09**(2015) 086 [arXiv:1506.03204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [36]W. Taylor and Y.-N. Wang,
*A Monte Carlo exploration of threefold base geometries for*4*d F-theory vacua*,*JHEP***01**(2016) 137 [arXiv:1510.04978] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [37]D.R. Morrison and W. Taylor,
*Non-Higgsable clusters for*4*D F-theory models*,*JHEP***05**(2015) 080 [arXiv:1412.6112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [38]D.R. Morrison and W. Taylor,
*Toric bases for*6*D F-theory models*,*Fortsch. Phys.***60**(2012) 1187 [arXiv:1204.0283] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [39]W. Taylor,
*On the Hodge structure of elliptically fibered Calabi-Yau threefolds*,*JHEP***08**(2012) 032 [arXiv:1205.0952] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [40]D.R. Morrison and W. Taylor,
*Sections, multisections and*U(1)*fields in F-theory*, arXiv:1404.1527 [INSPIRE]. - [41]G. Martini and W. Taylor, 6
*D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces*,*JHEP***06**(2015) 061 [arXiv:1404.6300] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [42]S.B. Johnson and W. Taylor,
*Calabi-Yau threefolds with large h*^{2,1},*JHEP***10**(2014) 23 [arXiv:1406.0514] [INSPIRE].ADSCrossRefGoogle Scholar - [43]W. Taylor and Y.-N. Wang,
*Non-toric bases for elliptic Calabi-Yau threefolds and*6*D F-theory vacua*, arXiv:1504.07689 [INSPIRE]. - [44]J.A. De Loera, J. Rambau and F. Santos,
*Triangulations: Structures for Algorithms and Applications*, 1st edition, Springer Publishing Company (2010).Google Scholar