Advertisement

Journal of High Energy Physics

, 2017:131 | Cite as

N =4 -conformal Galilei superalgebras inspired by D(2, 1; α) supermultiplets

  • Anton GalajinskyEmail author
  • Sergey Krivonos
Open Access
Regular Article - Theoretical Physics

Abstract

N = 4 supersymmetric extensions of the -conformal Galilei algebra are constructed by properly extending the Lie superalgebra associated with the most general N = 4 superconformal group in one dimension D(2,1;α). If the acceleration generators in the superalgebra form analogues of the irreducible (1, 4, 3)-, (2, 4, 2)-, (3, 4, 1)-, and (4, 4, 0)-supermultiplets of D(2, 1; α), the parameter α turns out to be constrained by Jacobi identities. In contrast, if the tower of the acceleration generators resembles a component decomposition of a generic real superfield, which is a reducible representation of D(2, 1; α), α remains arbitrary. An N = 4 -conformal Galilei superalgebra recently proposed in [Phys. Lett. B 771 (2017) 401] is shown to be a particular instance of a more general construction in this work.

Keywords

Conformal and W Symmetry Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Sakaguchi and K. Yoshida, More super Schrödinger algebras from P SU (2, 2|4), JHEP 08 (2008) 049 [arXiv:0806.3612] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Henkel and J. Unterberger, Schrödinger invariance and space-time symmetries, Nucl. Phys. B 660 (2003) 407 [hep-th/0302187] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    J.A. de Azcarraga and J. Lukierski, Galilean Superconformal Symmetries, Phys. Lett. B 678 (2009) 411 [arXiv:0905.0141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Sakaguchi, Super Galilean conformal algebra in AdS/CFT, J. Math. Phys. 51 (2010) 042301 [arXiv:0905.0188] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P.A. Horváthy, Non-Relativistic Conformal and Supersymmetries, Int. J. Mod. Phys. A 3 (1993) 339 [arXiv:0807.0513] [INSPIRE].Google Scholar
  6. [6]
    C. Duval and P.A. Horváthy, On Schrödinger superalgebras, J. Math. Phys. 35 (1994) 2516 [hep-th/0508079] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Henkel and J. Unterberger, Supersymmetric extensions of Schrödinger-invariance, Nucl. Phys. B 746 (2006) 155 [math-ph/0512024] [INSPIRE].
  8. [8]
    I. Masterov, N = 2 supersymmetric extension of ℓ-conformal Galilei algebra, J. Math. Phys. 53 (2012) 072904 [arXiv:1112.4924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Galajinsky and I. Masterov, N = 4 ℓ-conformal Galilei superalgebra, Phys. Lett. B 771 (2017) 401 [arXiv:1705.02814] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Galajinsky, O. Lechtenfeld and K. Polovnikov, N=4 superconformal Calogero models, JHEP 11 (2007) 008 [arXiv:0708.1075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Bellucci, S. Krivonos and A. Sutulin, N = 4 supersymmetric 3-particles Calogero model, Nucl. Phys. B 805 (2008) 24 [arXiv:0805.3480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Fedoruk, E. Ivanov and O. Lechtenfeld, Supersymmetric Calogero models by gauging, Phys. Rev. D 79 (2009) 105015 [arXiv:0812.4276] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    S. Krivonos and O. Lechtenfeld, Many-particle mechanics with D(2, 1 : α) superconformal symmetry, JHEP 02 (2011) 042 [arXiv:1012.4639] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Galajinsky, Conformal mechanics in Newton-Hooke spacetime, Nucl. Phys. B 832 (2010) 586 [arXiv:1002.2290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Hakobyan, S. Krivonos, O. Lechtenfeld and A. Nersessian, Hidden symmetries of integrable conformal mechanical systems, Phys. Lett. A 374 (2010) 801 [arXiv:0908.3290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Hakobyan, O. Lechtenfeld, A. Nersessian and A. Saghatelian, Invariants of the spherical sector in conformal mechanics, J. Phys. A 44 (2011) 055205 [arXiv:1008.2912] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    J. Negro, M.A. del Olmo and A. Rodriguez-Marco, Nonrelativistic conformal groups, J. Math. Phys. 38 (1997) 3786.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Henkel, Local Scale Invariance and Strongly Anisotropic Equilibrium Critical Systems, Phys. Rev. Lett. 78 (1997) 1940 [cond-mat/9610174] [INSPIRE].
  20. [20]
    S. Fedoruk and J. Lukierski, The algebraic structure of Galilean superconformal symmetries, Phys. Rev. D 84 (2011) 065002 [arXiv:1105.3444] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Aizawa, Z. Kuznetsova and F. Toppan, Chiral and Real N = 2 supersymmetric l-conformal Galilei algebras, J. Math. Phys. 54 (2013) 093506 [arXiv:1307.5259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Ivanov, S. Krivonos and O. Lechtenfeld, N = 4, D = 1 supermultiplets from nonlinear realizations of D(2, 1 : α), Class. Quant. Grav. 21 (2004) 1031 [hep-th/0310299] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Ivanov, S. Krivonos and O. Lechtenfeld, New variant of N = 4 superconformal mechanics, JHEP 03 (2003) 014 [hep-th/0212303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Bogoliubov Laboratory of Theoretical Physics, JINRDubnaRussia

Personalised recommendations