Testing naturalness at 100 TeV


Solutions to the electroweak hierarchy problem typically introduce a new symmetry to stabilize the quadratic ultraviolet sensitivity in the self-energy of the Higgs boson. The new symmetry is either broken softly or collectively, as for example in supersymmetric and little Higgs theories. At low energies such theories contain naturalness partners of the Standard Model fields which are responsible for canceling the quadratic divergence in the squared Higgs mass. Post the discovery of any partner-like particles, we propose to test the aforementioned cancellation by measuring relevant Higgs couplings. Using the fermionic top partners in little Higgs theories as an illustration, we construct a simplified model for naturalness and initiate a study on testing naturalness. After electroweak symmetry breaking, naturalness in the top sector requires a T  = − λ 2 t at leading order, where λ t and a T are the Higgs couplings to a pair of top quarks and top partners, respectively. Using a multivariate method of Boosted Decision Tree to tag boosted particles in the Standard Model, we show that, with a luminosity of 30 ab−1 at a 100 TeV pp-collider, naturalness could be tested with a precision of 10% for a top partner mass up to 2.5 TeV.

A preprint version of the article is available at ArXiv.


  1. [1]

    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].

  2. [2]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  3. [3]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  4. [4]

    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. 136B (1984) 183 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. 136B (1984) 187 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    ATLAS collaboration, Search for production of vector-like top quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-013, CERN, Geneva Switzerland, (2016).

  8. [8]

    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE].

  9. [9]

    ATLAS collaboration, Search for new physics using events with b-jets and a pair of same charge leptons in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-032, CERN, Geneva Switzerland, (2016).

  10. [10]

    CMS collaboration, Search for pair production of vector-like T quarks in the lepton plus jets final state, CMS-PAS-B2G-16-002, CERN, Geneva Switzerland, (2016).

  11. [11]

    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].

  12. [12]

    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

  13. [13]

    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

  14. [14]

    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

  15. [15]

    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

  16. [16]

    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  17. [17]

    FCC collaboration, A. Ball et al., Future Circular Collider study hadron collider parameters, FCC-ACC-SPC-0001, CERN, Geneva Switzerland, (2014).

  18. [18]

    CEPC-SPPC Study Group collaboration, CEPC-SPPC preliminary conceptual design report 1. Physics and detector, http://cepc.ihep.ac.cn/preCDR/main_preCDR.pdf, (2015).

  19. [19]

    H.-C. Cheng, I. Low and L.-T. Wang, Top partners in little Higgs theories with T-parity, Phys. Rev. D 74 (2006) 055001 [hep-ph/0510225] [INSPIRE].

  20. [20]

    S. Chang, A ‘littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [INSPIRE].

  21. [21]

    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

  23. [23]

    D.E. Kaplan and M. Schmaltz, The little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [INSPIRE].

  24. [24]

    G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless top partners, a 125 GeV Higgs and the limits on naturalness, Phys. Rev. D 91 (2015) 055007 [arXiv:1411.3310] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].

  26. [26]

    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].

  27. [27]

    V. Drollinger, T. Müller and D. Denegri, Searching for Higgs bosons in association with top quark pairs in the \( {H}^0\to b\overline{b} \) decay mode, hep-ph/0111312 [INSPIRE].

  28. [28]

    T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling tth via the matrix element method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    CMS collaboration, Search for the associated production of the Higgs boson with a top-quark pair, JHEP 09 (2014) 087 [Erratum ibid. 10 (2014) 106] [arXiv:1408.1682] [INSPIRE].

  31. [31]

    ATLAS collaboration, Search for Hγγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector, Phys. Lett. B 740 (2015) 222 [arXiv:1409.3122] [INSPIRE].

  32. [32]

    CMS collaboration, Search for a Standard Model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks using a matrix element method, Eur. Phys. J. C 75 (2015) 251 [arXiv:1502.02485] [INSPIRE].

  33. [33]

    LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [INSPIRE].

  34. [34]

    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, EPL 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    A. Arbey et al., Physics at the e + e linear collider, Eur. Phys. J. C 75 (2015) 371 [arXiv:1504.01726] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    M.L. Mangano, T. Plehn, P. Reimitz, T. Schell and H.-S. Shao, Measuring the top Yukawa coupling at 100 TeV, J. Phys. G 43 (2016) 035001 [arXiv:1507.08169] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    F. del Aguila, L. Ametller, G.L. Kane and J. Vidal, Vector like fermion and standard Higgs production at hadron colliders, Nucl. Phys. B 334 (1990) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  39. [39]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  41. [41]

    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  42. [42]

    C. Brust, P. Maksimovic, A. Sady, P. Saraswat, M.T. Walters and Y. Xin, Identifying boosted new physics with non-isolated leptons, JHEP 04 (2015) 079 [arXiv:1410.0362] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    J. Hajer, BoCA: Boosted Collider Analysis, https://github.com/BoostedColliderAnalysis/BoCA, (2015) [Zenodo].

  44. [44]

    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    N. Craig, J. Hajer, Y.-Y. Li, T. Liu and H. Zhang, Heavy Higgs bosons at low tan β: from the LHC to 100 TeV, JHEP 01 (2017) 018 [arXiv:1605.08744] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].

  47. [47]

    R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  51. [51]

    CMS collaboration, CMS at the high-energy frontier. contribution to the update of the european strategy for particle physics, CMS-NOTE-2012-006, CERN, Geneva Switzerland, (2012).

  52. [52]

    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS (update), ATL-PHYS-PUB-2012-004, CERN, Geneva Switzerland, (2012).

  53. [53]

    G. Burdman, M. Perelstein and A. Pierce, Large Hadron Collider tests of a little Higgs model, Phys. Rev. Lett. 90 (2003) 241802 [Erratum ibid. 92 (2004) 049903] [hep-ph/0212228] [INSPIRE].

  54. [54]

    M. Blanke, D. Curtin and M. Perelstein, SUSY-Yukawa sum rule at the LHC, Phys. Rev. D 82 (2010) 035020 [arXiv:1004.5350] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    S. Chang, C. Kilic and T. Okui, Measuring top squark interactions with the Standard Model through associated production, Phys. Rev. D 84 (2011) 035015 [arXiv:1105.1332] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Tao Liu.

Additional information

ArXiv ePrint: 1705.07743

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, CR., Hajer, J., Liu, T. et al. Testing naturalness at 100 TeV. J. High Energ. Phys. 2017, 129 (2017). https://doi.org/10.1007/JHEP09(2017)129

Download citation


  • Beyond Standard Model
  • Higgs Physics
  • Technicolor and Composite Models