Skip to main content

Thermalization after holographic bilocal quench

A preprint version of the article is available at arXiv.

Abstract

We study thermalization in the holographic (1 + 1)-dimensional CFT after simultaneous generation of two high-energy excitations in the antipodal points on the circle. The holographic picture of such quantum quench is the creation of BTZ black hole from a collision of two massless particles. We perform holographic computation of entanglement entropy and mutual information in the boundary theory and analyze their evolution with time. We show that equilibration of the entanglement in the regions which contained one of the initial excitations is generally similar to that in other holographic quench models, but with some important distinctions. We observe that entanglement propagates along a sharp effective light cone from the points of initial excitations on the boundary. The characteristics of entanglement propagation in the global quench models such as entanglement velocity and the light cone velocity also have a meaning in the bilocal quench scenario. We also observe the loss of memory about the initial state during the equilibration process. We find that the memory loss reflects on the time behavior of the entanglement similarly to the global quench case, and it is related to the universal linear growth of entanglement, which comes from the interior of the forming black hole. We also analyze general two-point correlation functions in the framework of the geodesic approximation, focusing on the study of the late time behavior.

References

  1. [1]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. [2]

    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  6. [6]

    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    Y.-Z. Li, S.-F. Wu, Y.-Q. Wang and G.-H. Yang, Linear growth of entanglement entropy in holographic thermalization captured by horizon interiors and mutual information, JHEP 09 (2013) 057 [arXiv:1306.0210] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014) 097 [arXiv:1312.6887] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    V. Ziogas, Holographic mutual information in global Vaidya-BTZ spacetime, JHEP 09 (2015) 114 [arXiv:1507.00306] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    H. Casini, H. Liu and M. Mezei, Spread of entanglement and causality, JHEP 07 (2016) 077 [arXiv:1509.05044] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black hole collapse in the 1/c expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP 05 (2017) 065 [arXiv:1608.05101] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    M. Mezei, On entanglement spreading from holography, JHEP 05 (2017) 064 [arXiv:1612.00082] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    D.S. Ageev and I.Ya. Aref’eva, Waking and scrambling in holographic heating up, arXiv:1701.07280 [INSPIRE].

  19. [19]

    D.S. Ageev and I.Ya. Aref’eva, Memory loss in holographic non-equilibrium heating, arXiv:1704.07747 [INSPIRE].

  20. [20]

    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

  21. [21]

    P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field theories, J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  22. [22]

    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic local quenches and entanglement density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2d CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N conformal field theories, PTEP 2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE].

  26. [26]

    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum entanglement of localized excited states at finite temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement scrambling in 2D conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M. Rangamani, M. Rozali and A. Vincart-Emard, Dynamics of holographic entanglement entropy following a local quench, JHEP 04 (2016) 069 [arXiv:1512.03478] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    M. Rozali and A. Vincart-Emard, Comments on entanglement propagation, JHEP 06 (2017) 044 [arXiv:1702.05869] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of local quantum quenches, JHEP 08 (2016) 127 [arXiv:1605.05987] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and P. Witkowski, Time evolution of entanglement for holographic steady state formation, arXiv:1705.04696 [INSPIRE].

  33. [33]

    X. Bai, B.-H. Lee, L. Li, J.-R. Sun and H.-Q. Zhang, Time evolution of entanglement entropy in quenched holographic superconductors, JHEP 04 (2015) 066 [arXiv:1412.5500] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav. 16 (1999) 1069 [gr-qc/9809087] [INSPIRE].

  35. [35]

    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    A. Jevicki and J. Thaler, Dynamics of black hole formation in an exactly solvable model, Phys. Rev. D 66 (2002) 024041 [hep-th/0203172] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. [37]

    D.S. Ageev and I. Ya. Aref’eva, Holographic instant conformal symmetry breaking by colliding conical defects, Theor. Math. Phys. 189 (2016) 1742 [arXiv:1512.03363] [INSPIRE].

  38. [38]

    I.Ya. Aref’eva, Holographic approach to quark-gluon plasma in heavy ion collisions, Phys. Usp. 57 (2014) 527 [Usp. Fiz. Na.uk 184 (2014) 569].

  39. [39]

    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    I. Bengtsson, Anti de Sitter space, lecture notes, http://www.fysik.su.se/~ingemar/Kurs.pdf.

  41. [41]

    I. Ya. Aref’eva, A.A. Bagrov and E.A. Guseva, Critical formation of trapped surfaces in the collision of non-expanding gravitational shock waves in de Sitter space-time, JHEP 12 (2009) 009 [arXiv:0905.1087] [INSPIRE].

  42. [42]

    H.-J. Matschull and M. Welling, Quantum mechanics of a point particle in (2 + 1)-dimensional gravity, Class. Quant. Grav. 15 (1998) 2981 [gr-qc/9708054] [INSPIRE].

  43. [43]

    H. Iwaniec, Spectral methods of automorphic forms, American Mathematical Society, U.S.A. (2002).

    Book  MATH  Google Scholar 

  44. [44]

    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    I.Ya. Arefeva and A.A. Bagrov, Holographic dual of a conical defect, Theor. Math. Phys. 182 (2015) 1 [Teor. Mat. Fiz. 182 (2014) 3].

  46. [46]

    D.S. Ageev, I.Ya. Aref’eva and M.D. Tikhanovskaya, (1 + 1)-correlators and moving massive defects, Theor. Math. Phys. 188 (2016) 1038 [arXiv:1512.03362] [INSPIRE].

  47. [47]

    I.Ya. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Improved image method for a holographic description of conical defects, Theor. Math. Phys. 189 (2016) 1660 [arXiv:1604.08905] [INSPIRE].

  48. [48]

    M. Tikhanovskaya, Localized quench in 1 + 1 conformal field theory, EPJ Web Conf. 125 (2016) 05026.

    Article  Google Scholar 

  49. [49]

    I. Arefeva, A. Bagrov, P. Saterskog and K. Schalm, Holographic dual of a time machine, Phys. Rev. D 94 (2016) 044059 [arXiv:1508.04440] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. [51]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728 [INSPIRE].

  53. [53]

    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. [55]

    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    B. Freivogel, R.A. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting shadows on holographic reconstruction, Phys. Rev. D 91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    I.Ya. Aref’eva and M.A. Khramtsov, AdS/CFT prescription for angle-deficit space and winding geodesics, JHEP 04 (2016) 121 [arXiv:1601.02008] [INSPIRE].

  63. [63]

    M. Khramtsov, Holographic dictionary and defects in the bulk, EPJ Web Conf. 125 (2016) 05010.

    Article  Google Scholar 

  64. [64]

    E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  65. [65]

    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    K. Osterwalder and R. Schrader, Axioms for euclidean Green’s functions, Commun. Math. Phys. 31 (1973) 83 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. [67]

    K. Osterwalder and R. Schrader, Axioms for euclidean Green’s functions. 2., Commun. Math. Phys. 42 (1975) 281.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. [68]

    I.Y. Arefeva, A.A. Bagrov and E.O. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  71. [71]

    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. [72]

    K.B. Alkalaev, Many-point classical conformal blocks and geodesic networks on the hyperbolic plane, JHEP 12 (2016) 070 [arXiv:1610.06717] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. [73]

    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2 , JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    E.J. Lindgren, Black hole formation from point-like particles in three-dimensional anti-de Sitter space, Class. Quant. Grav. 33 (2016) 145009 [arXiv:1512.05696] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Khramtsov.

Additional information

ArXiv ePrint: 1706.07390

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y., Khramtsov, M.A. & Tikhanovskaya, M.D. Thermalization after holographic bilocal quench. J. High Energ. Phys. 2017, 115 (2017). https://doi.org/10.1007/JHEP09(2017)115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2017)115

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • Conformal Field Theory