# An étude on global vacuum energy sequester

- 97 Downloads
- 5 Citations

## Abstract

Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore, the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.

## Keywords

Classical Theories of Gravity Effective Field Theories## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]N. Kaloper and A. Padilla,
*Sequestering the standard model vacuum energy*,*Phys. Rev. Lett.***112**(2014) 091304 [arXiv:1309.6562] [INSPIRE].ADSCrossRefGoogle Scholar - [2]N. Kaloper and A. Padilla,
*Vacuum energy sequestering: the framework and its cosmological consequences*,*Phys. Rev.***D 90**(2014) 084023 [arXiv:1406.0711] [INSPIRE].ADSGoogle Scholar - [3]N. Kaloper and A. Padilla,
*Vacuum energy sequestering and graviton loops*,*Phys. Rev. Lett.***118**(2017) 061303 [arXiv:1606.04958] [INSPIRE].ADSCrossRefGoogle Scholar - [4]Y.B. Zeldovich,
*Cosmological constant and elementary particles*,*JETP Lett.***6**(1967) 316 [*Pisma Zh. Eksp. Teor. Fiz.***6**(1967) 883] [INSPIRE]. - [5]F. Wilczek,
*Foundations and working pictures in microphysical cosmology*,*Phys. Rept.***104**(1984) 143 [INSPIRE].ADSCrossRefGoogle Scholar - [6]S.E. Rugh and H. Zinkernagel,
*The quantum vacuum and the cosmological constant problem*,*Stud. Hist. Phil. Sci.***B 33**(2002) 663 [hep-th/0012253] [INSPIRE].MathSciNetzbMATHGoogle Scholar - [7]S. Weinberg,
*The cosmological constant problem*,*Rev. Mod. Phys.***61**(1989) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [8]
- [9]
- [10]G. Ossola and A. Sirlin,
*Considerations concerning the contributions of fundamental particles to the vacuum energy density*,*Eur. Phys. J.***C 31**(2003) 165 [hep-ph/0305050] [INSPIRE]. - [11]J.L. Anderson and D. Finkelstein,
*Cosmological constant and fundamental length*,*Am. J. Phys.***39**(1971) 901 [INSPIRE].ADSCrossRefGoogle Scholar - [12]W. Buchmüller and N. Dragon,
*Einstein gravity from restricted coordinate invariance*,*Phys. Lett.***B 207**(1988) 292 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [13]W. Buchmüller and N. Dragon,
*Gauge fixing and the cosmological constant*,*Phys. Lett.***B 223**(1989) 313 [INSPIRE].ADSCrossRefGoogle Scholar - [14]M. Henneaux and C. Teitelboim,
*The cosmological constant and general covariance*,*Phys. Lett.***B 222**(1989) 195 [INSPIRE].ADSCrossRefGoogle Scholar - [15]W.G. Unruh,
*A unimodular theory of canonical quantum gravity*,*Phys. Rev.***D 40**(1989) 1048 [INSPIRE].ADSMathSciNetGoogle Scholar - [16]Y.J. Ng and H. van Dam,
*Possible solution to the cosmological constant problem*,*Phys. Rev. Lett.***65**(1990) 1972 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]K.V. Kuchar,
*Does an unspecified cosmological constant solve the problem of time in quantum gravity?*,*Phys. Rev.***D 43**(1991) 3332 [INSPIRE].ADSMathSciNetGoogle Scholar - [18]A. Padilla and I.D. Saltas,
*A note on classical and quantum unimodular gravity*,*Eur. Phys. J.***C 75**(2015) 561 [arXiv:1409.3573] [INSPIRE].ADSCrossRefGoogle Scholar - [19]N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze,
*Nonlocal modification of gravity and the cosmological constant problem*, hep-th/0209227 [INSPIRE]. - [20]N. Kaloper, A. Padilla, D. Stefanyszyn and G. Zahariade,
*Manifestly local theory of vacuum energy sequestering*,*Phys. Rev. Lett.***116**(2016) 051302 [arXiv:1505.01492] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [21]A.A. Tseytlin,
*Duality symmetric string theory and the cosmological constant problem*,*Phys. Rev. Lett.***66**(1991) 545 [INSPIRE].ADSCrossRefGoogle Scholar - [22]A.D. Linde,
*The universe multiplication and the cosmological constant problem*,*Phys. Lett.***B 200**(1988) 272 [INSPIRE].ADSCrossRefGoogle Scholar - [23]G. Gabadadze,
*The big constant out, the small constant in*,*Phys. Lett.***B 739**(2014) 263 [arXiv:1406.6701] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [24]I. Ben-Dayan, R. Richter, F. Ruehle and A. Westphal,
*Vacuum energy sequestering and conformal symmetry*,*JCAP***05**(2016) 002 [arXiv:1507.04158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [25]S.M. Carroll and G.N. Remmen,
*A nonlocal approach to the cosmological constant problem*,*Phys. Rev.***D 95**(2017) 123504 [arXiv:1703.09715] [INSPIRE].ADSGoogle Scholar - [26]F.R. Klinkhamer and G.E. Volovik,
*Dynamic vacuum variable and equilibrium approach in cosmology*,*Phys. Rev.***D 78**(2008) 063528 [arXiv:0806.2805] [INSPIRE].ADSGoogle Scholar - [27]N. Kaloper and L. Sorbo,
*A natural framework for chaotic inflation*,*Phys. Rev. Lett.***102**(2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar - [28]N. Kaloper, A. Lawrence and L. Sorbo,
*An ignoble approach to large field inflation*,*JCAP***03**(2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar - [29]N. Kaloper and A. Lawrence,
*London equation for monodromy inflation*,*Phys. Rev.***D 95**(2017) 063526 [arXiv:1607.06105] [INSPIRE].ADSGoogle Scholar - [30]I. Oda,
*Manifestly local formulation of nonlocal approach to the cosmological constant problem*,*Phys. Rev.***D 95**(2017) 104020 [arXiv:1704.05619] [INSPIRE].ADSGoogle Scholar - [31]S.R. Coleman,
*Why there is nothing rather than something: a theory of the cosmological constant*,*Nucl. Phys.***B 310**(1988) 643 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]I.R. Klebanov, L. Susskind and T. Banks,
*Wormholes and the cosmological constant*,*Nucl. Phys.***B 317**(1989) 665 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [33]J. Polchinski,
*Decoupling versus excluded volume or return of the giant wormholes*,*Nucl. Phys.***B 325**(1989) 619 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [34]L. Smolin,
*The quantization of unimodular gravity and the cosmological constant problems*,*Phys. Rev.***D 80**(2009) 084003 [arXiv:0904.4841] [INSPIRE].ADSMathSciNetGoogle Scholar - [35]N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum,
*A small cosmological constant from a large extra dimension*,*Phys. Lett.***B 480**(2000) 193 [hep-th/0001197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [36]S. Kachru, M.B. Schulz and E. Silverstein,
*Selftuning flat domain walls in*5*D gravity and string theory*,*Phys. Rev.***D 62**(2000) 045021 [hep-th/0001206] [INSPIRE].ADSGoogle Scholar - [37]N. Kaloper, A. Padilla and D. Stefanyszyn,
*Sequestering effects on and of vacuum decay*,*Phys. Rev.***D 94**(2016) 025022 [arXiv:1604.04000] [INSPIRE].ADSzbMATHGoogle Scholar - [38]N. Kaloper and A. Padilla,
*Sequestration of vacuum energy and the end of the universe*,*Phys. Rev. Lett.***114**(2015) 101302 [arXiv:1409.7073] [INSPIRE].ADSCrossRefGoogle Scholar - [39]R. Bousso and J. Polchinski,
*Quantization of four form fluxes and dynamical neutralization of the cosmological constant*,*JHEP***06**(2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [40]A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang and K. Tilburg,
*A small weak scale from a small cosmological constant*,*JHEP***05**(2017) 071 [arXiv:1609.06320] [INSPIRE].ADSCrossRefGoogle Scholar - [41]S. Kachru, J. Kumar and E. Silverstein,
*Vacuum energy cancellation in a nonsupersymmetric string*,*Phys. Rev.***D 59**(1999) 106004 [hep-th/9807076] [INSPIRE].ADSMathSciNetGoogle Scholar - [42]S. Kachru and E. Silverstein,
*On vanishing two loop cosmological constants in nonsupersymmetric strings*,*JHEP***01**(1999) 004 [hep-th/9810129] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar