Advertisement

Journal of High Energy Physics

, 2017:74 | Cite as

An étude on global vacuum energy sequester

  • Guido D’AmicoEmail author
  • Nemanja Kaloper
  • Antonio Padilla
  • David Stefanyszyn
  • Alexander Westphal
  • George Zahariade
Open Access
Regular Article - Theoretical Physics

Abstract

Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore, the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.

Keywords

Classical Theories of Gravity Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Kaloper and A. Padilla, Sequestering the standard model vacuum energy, Phys. Rev. Lett. 112 (2014) 091304 [arXiv:1309.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Kaloper and A. Padilla, Vacuum energy sequestering: the framework and its cosmological consequences, Phys. Rev. D 90 (2014) 084023 [arXiv:1406.0711] [INSPIRE].ADSGoogle Scholar
  3. [3]
    N. Kaloper and A. Padilla, Vacuum energy sequestering and graviton loops, Phys. Rev. Lett. 118 (2017) 061303 [arXiv:1606.04958] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y.B. Zeldovich, Cosmological constant and elementary particles, JETP Lett. 6 (1967) 316 [Pisma Zh. Eksp. Teor. Fiz. 6 (1967) 883] [INSPIRE].
  5. [5]
    F. Wilczek, Foundations and working pictures in microphysical cosmology, Phys. Rept. 104 (1984) 143 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.E. Rugh and H. Zinkernagel, The quantum vacuum and the cosmological constant problem, Stud. Hist. Phil. Sci. B 33 (2002) 663 [hep-th/0012253] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Padilla, Lectures on the cosmological constant problem, arXiv:1502.05296 [INSPIRE].
  9. [9]
    E.K. Akhmedov, Vacuum energy and relativistic invariance, hep-th/0204048 [INSPIRE].
  10. [10]
    G. Ossola and A. Sirlin, Considerations concerning the contributions of fundamental particles to the vacuum energy density, Eur. Phys. J. C 31 (2003) 165 [hep-ph/0305050] [INSPIRE].
  11. [11]
    J.L. Anderson and D. Finkelstein, Cosmological constant and fundamental length, Am. J. Phys. 39 (1971) 901 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Buchmüller and N. Dragon, Einstein gravity from restricted coordinate invariance, Phys. Lett. B 207 (1988) 292 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    W. Buchmüller and N. Dragon, Gauge fixing and the cosmological constant, Phys. Lett. B 223 (1989) 313 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Henneaux and C. Teitelboim, The cosmological constant and general covariance, Phys. Lett. B 222 (1989) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W.G. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989) 1048 [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    Y.J. Ng and H. van Dam, Possible solution to the cosmological constant problem, Phys. Rev. Lett. 65 (1990) 1972 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K.V. Kuchar, Does an unspecified cosmological constant solve the problem of time in quantum gravity?, Phys. Rev. D 43 (1991) 3332 [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    A. Padilla and I.D. Saltas, A note on classical and quantum unimodular gravity, Eur. Phys. J. C 75 (2015) 561 [arXiv:1409.3573] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze, Nonlocal modification of gravity and the cosmological constant problem, hep-th/0209227 [INSPIRE].
  20. [20]
    N. Kaloper, A. Padilla, D. Stefanyszyn and G. Zahariade, Manifestly local theory of vacuum energy sequestering, Phys. Rev. Lett. 116 (2016) 051302 [arXiv:1505.01492] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    A.A. Tseytlin, Duality symmetric string theory and the cosmological constant problem, Phys. Rev. Lett. 66 (1991) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.D. Linde, The universe multiplication and the cosmological constant problem, Phys. Lett. B 200 (1988) 272 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Gabadadze, The big constant out, the small constant in, Phys. Lett. B 739 (2014) 263 [arXiv:1406.6701] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    I. Ben-Dayan, R. Richter, F. Ruehle and A. Westphal, Vacuum energy sequestering and conformal symmetry, JCAP 05 (2016) 002 [arXiv:1507.04158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S.M. Carroll and G.N. Remmen, A nonlocal approach to the cosmological constant problem, Phys. Rev. D 95 (2017) 123504 [arXiv:1703.09715] [INSPIRE].ADSGoogle Scholar
  26. [26]
    F.R. Klinkhamer and G.E. Volovik, Dynamic vacuum variable and equilibrium approach in cosmology, Phys. Rev. D 78 (2008) 063528 [arXiv:0806.2805] [INSPIRE].ADSGoogle Scholar
  27. [27]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N. Kaloper and A. Lawrence, London equation for monodromy inflation, Phys. Rev. D 95 (2017) 063526 [arXiv:1607.06105] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I. Oda, Manifestly local formulation of nonlocal approach to the cosmological constant problem, Phys. Rev. D 95 (2017) 104020 [arXiv:1704.05619] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.R. Coleman, Why there is nothing rather than something: a theory of the cosmological constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    I.R. Klebanov, L. Susskind and T. Banks, Wormholes and the cosmological constant, Nucl. Phys. B 317 (1989) 665 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J. Polchinski, Decoupling versus excluded volume or return of the giant wormholes, Nucl. Phys. B 325 (1989) 619 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    L. Smolin, The quantization of unimodular gravity and the cosmological constant problems, Phys. Rev. D 80 (2009) 084003 [arXiv:0904.4841] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett. B 480 (2000) 193 [hep-th/0001197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Kachru, M.B. Schulz and E. Silverstein, Selftuning flat domain walls in 5D gravity and string theory, Phys. Rev. D 62 (2000) 045021 [hep-th/0001206] [INSPIRE].ADSGoogle Scholar
  37. [37]
    N. Kaloper, A. Padilla and D. Stefanyszyn, Sequestering effects on and of vacuum decay, Phys. Rev. D 94 (2016) 025022 [arXiv:1604.04000] [INSPIRE].ADSzbMATHGoogle Scholar
  38. [38]
    N. Kaloper and A. Padilla, Sequestration of vacuum energy and the end of the universe, Phys. Rev. Lett. 114 (2015) 101302 [arXiv:1409.7073] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang and K. Tilburg, A small weak scale from a small cosmological constant, JHEP 05 (2017) 071 [arXiv:1609.06320] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Kachru, J. Kumar and E. Silverstein, Vacuum energy cancellation in a nonsupersymmetric string, Phys. Rev. D 59 (1999) 106004 [hep-th/9807076] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    S. Kachru and E. Silverstein, On vanishing two loop cosmological constants in nonsupersymmetric strings, JHEP 01 (1999) 004 [hep-th/9810129] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGenevaSwitzerland
  2. 2.Department of PhysicsUniversity of CaliforniaDavisU.S.A.
  3. 3.School of Physics and AstronomyUniversity of NottinghamNottinghamU.K.
  4. 4.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands
  5. 5.Deutsches Elektronen-Synchrotron DESY, Theory GroupHamburgGermany
  6. 6.Department of PhysicsArizona State UniversityTempeU.S.A.

Personalised recommendations