Journal of High Energy Physics

, 2017:65 | Cite as

Higgs boson plus dijets: higher order corrections

  • Jeppe R. Andersen
  • Tuomas Hapola
  • Andreas Maier
  • Jennifer M. Smillie
Open Access
Regular Article - Theoretical Physics
  • 53 Downloads

Abstract

The gluon fusion component of Higgs-boson production in association with dijets is of particular interest because it both (a) allows for a study of the CP-structure of the Higgs-boson couplings to gluons, and (b) provides a background to the otherwise clean study of Higgs-boson production through vector-boson fusion. The degree to which this background can be controlled, and the CP-structure of the gluon-Higgs coupling extracted,both depend on the successful description of the perturbative corrections to the gluon-fusion process.

High Energy Jets (HEJ) provides all-order, perturbative predictions for multi-jet processes at hadron colliders at a fully exclusive, partonic level. We develop the framework of HEJ to include the process of Higgs-boson production in association with at least two jets. We discuss the logarithmic accuracy obtained in the underlying all-order results, and calculate the first next-to-leading corrections to the framework of HEJ, thereby significantly reducing the corrections which arise by matching to and merging fixed-order results.

Finally, we compare predictions for relevant observables obtained with NLO and HEJ. We observe that the selection criteria commonly used for isolating the vector-boson fusion component suppresses the gluon-fusion component even further than predicted at NLO.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [Erratum ibid. B 734 (2014) 406] [arXiv:1307.1427] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the Higgs boson mass from the Hγγ and HZZ * → 4ℓ channels with the ATLAS detector using 25fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006 [arXiv:1408.5191] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].
  8. [8]
    CMS collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].
  9. [9]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  10. [10]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].
  11. [11]
    CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].
  12. [12]
    J.R. Andersen, T. Binoth, G. Heinrich and J.M. Smillie, Loop induced interference effects in Higgs Boson plus two jet production at the LHC, JHEP 02 (2008) 057 [arXiv:0709.3513] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Bredenstein, K. Hagiwara and B. Jäger, Mixed QCD-electroweak contributions to Higgs-plus-dijet production at the LHC, Phys. Rev. D 77 (2008) 073004 [arXiv:0801.4231] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP 08 (2009) 058 [arXiv:0906.0008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    ATLAS collaboration, Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at \( \sqrt{s}=8 \) TeV with ATLAS, JHEP 09 (2014) 112 [arXiv:1407.4222] [INSPIRE].
  16. [16]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
  17. [17]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Higgs + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [INSPIRE].
  18. [18]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].
  19. [19]
    G. Klämke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].
  20. [20]
    J.R. Andersen, K. Arnold and D. Zeppenfeld, Azimuthal angle correlations for Higgs boson plus multi-jet events, JHEP 06 (2010) 091 [arXiv:1001.3822] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    Y.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Rapidity gaps in Higgs production, Phys. Lett. B 274 (1992) 116 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, Measurement of dijet production with a veto on additional central jet activity in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2011) 053 [arXiv:1107.1641] [INSPIRE].
  23. [23]
    ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].
  24. [24]
    D0 collaboration, V.M. Abazov et al., Studies of W boson plus jets production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 88 (2013) 092001 [arXiv:1302.6508] [INSPIRE].
  25. [25]
    V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].
  27. [27]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
  28. [28]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
  29. [29]
    ATLAS collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector, Eur. Phys. J. C 75 (2015) 82 [arXiv:1409.8639] [INSPIRE].
  30. [30]
    J.R. Andersen and J.M. Smillie, Constructing all-order corrections to multi-jet rates, JHEP 01 (2010) 039 [arXiv:0908.2786] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    J.R. Andersen and J.M. Smillie, The factorisation of the t-channel pole in quark-gluon scattering, Phys. Rev. D 81 (2010) 114021 [arXiv:0910.5113] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with high energy jets, JHEP 06 (2011) 010 [arXiv:1101.5394] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.R. Andersen, T. Hapola and J.M. Smillie, W plus multiple jets at the LHC with high energy jets, JHEP 09 (2012) 047 [arXiv:1206.6763] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.R. Andersen, J.J. Medley and J.M. Smillie, Z/γ * plus multiple hard jets in high energy collisions, JHEP 05 (2016) 136 [arXiv:1603.05460] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    CMS collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 036 [arXiv:1202.0704] [INSPIRE].
  36. [36]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
  37. [37]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R.C. Brower, C.E. DeTar and J.H. Weis, Regge theory for multiparticle amplitudes, Phys. Rept. 14 (1974) 257 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V.S. Fadin, R. Fiore, M.G. Kozlov and A.V. Reznichenko, Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA, Phys. Lett. B 639 (2006) 74 [hep-ph/0602006] [INSPIRE].
  40. [40]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].
  42. [42]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    V. Del Duca, Parke-Taylor amplitudes in the multi-Regge kinematics, Phys. Rev. D 48 (1993) 5133 [hep-ph/9304259] [INSPIRE].
  44. [44]
    A.V. Bogdan and V.S. Fadin, A proof of the reggeized form of amplitudes with quark exchanges, Nucl. Phys. B 740 (2006) 36 [hep-ph/0601117] [INSPIRE].
  45. [45]
    V.S. Fadin, M.G. Kozlov and A.V. Reznichenko, Radiative corrections to QCD amplitudes in quasimulti-Regge kinematics, Phys. Atom. Nucl. 67 (2004) 359 [Yad. Fiz. 67 (2004) 377] [hep-ph/0302224] [INSPIRE].
  46. [46]
    V.S. Fadin, The gluon reggeization in perturbative QCD at NLO, hep-ph/0511121 [INSPIRE].
  47. [47]
    V.S. Fadin and L.N. Lipatov, Next-to-leading corrections to the BFKL equation from the gluon and quark production, Nucl. Phys. B 477 (1996) 767 [hep-ph/9602287] [INSPIRE].
  48. [48]
    A.V. Bogdan, V. Del Duca, V.S. Fadin and E.W.N. Glover, The quark Regge trajectory at two loops, JHEP 03 (2002) 032 [hep-ph/0201240] [INSPIRE].
  49. [49]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].
  50. [50]
    V. Del Duca, W. Kilgore, C. Oleari, C.R. Schmidt and D. Zeppenfeld, Kinematical limits on Higgs boson production via gluon fusion in association with jets, Phys. Rev. D 67 (2003) 073003 [hep-ph/0301013] [INSPIRE].
  51. [51]
    J.R. Andersen and C.D. White, A new framework for multijet predictions and its application to Higgs boson production at the LHC, Phys. Rev. D 78 (2008) 051501 [arXiv:0802.2858] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J.R. Andersen, V. Del Duca and C.D. White, Higgs boson production in association with multiple hard jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M.J. Dolan, P. Harris, M. Jankowiak and M. Spannowsky, Constraining CP-violating Higgs sectors at the LHC using gluon fusion, Phys. Rev. D 90 (2014) 073008 [arXiv:1406.3322] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].
  57. [57]
    J.M. Campbell, R.K. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  2. 2.Higgs Centre for Theoretical PhysicsUniversity of EdinburghEdinburghU.K.

Personalised recommendations