Journal of High Energy Physics

, 2017:34 | Cite as

Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

  • Stefan Dittmaier
  • Alexander Huss
  • Gernot Knippen
Open Access
Regular Article - Theoretical Physics


Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Search for triboson W ± W ± W production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 141 [arXiv:1610.05088] [INSPIRE].
  2. [2]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].
  6. [6]
    Y.-B. Shen, R.-Y. Zhang, W.-G. Ma, X.-Z. Li and L. Guo, NLO QCD and electroweak corrections to WWW production at the LHC, Phys. Rev. D 95 (2017) 073005 [arXiv:1605.00554] [INSPIRE].
  7. [7]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  9. [9]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  10. [10]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  11. [11]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  12. [12]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a Fortran-based complex one-loop library in extended regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
  15. [15]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  16. [16]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  18. [18]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  19. [19]
    J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  21. [21]
    S. Dittmaier and M. Krämer, 1, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].
  22. [22]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  24. [24]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  25. [25]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
  26. [26]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.-y. Chiu, R. Kelley and A.V. Manohar, Electroweak corrections using effective field theory: applications to the LHC, Phys. Rev. D 78 (2008) 073006 [arXiv:0806.1240] [INSPIRE].
  28. [28]
    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].
  29. [29]
    A. Manohar, B. Shotwell, C. Bauer and S. Turczyk, Non-cancellation of electroweak logarithms in high-energy scattering, Phys. Lett. B 740 (2015) 179 [arXiv:1409.1918] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Sommerfeld, Atombau und Spektrallinien, Bd. 2, Vieweg, Braunschweig, Germany (1939).Google Scholar
  31. [31]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  33. [33]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The photon PDF in events with rapidity gaps, Eur. Phys. J. C 76 (2016) 255 [arXiv:1601.03772] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    xFitter Developers’ Team collaboration, F. Giuli et al., The photon PDF from high-mass Drell-Yan data at the LHC, Eur. Phys. J. C 77 (2017) 400 [arXiv:1701.08553] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Stefan Dittmaier
    • 1
  • Alexander Huss
    • 2
  • Gernot Knippen
    • 1
  1. 1.Albert-Ludwigs-Universität Freiburg, Physikalisches InstitutFreiburgGermany
  2. 2.Institute for Theoretical Physics, ETHZürichSwitzerland

Personalised recommendations