Advertisement

Journal of High Energy Physics

, 2017:28 | Cite as

A higher-order Skyrme model

  • Sven Bjarke Gudnason
  • Muneto Nitta
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a higher-order Skyrme model with derivative terms of eighth, tenth and twelfth order. Our construction yields simple and easy-to-interpret higher-order Lagrangians. We first show that a Skyrmion with higher-order terms proposed by Marleau has an instability in the form of a baby-Skyrmion string, while the static energies of our construction are positive definite, implying stability against time-independent perturbations. However, we also find that the Hamiltonians of our construction possess two kinds of dynamical instabilities, which may indicate the instability with respect to time-dependent perturbations. Different from the well-known Ostrogradsky instability, the instabilities that we find are intrinsically of nonlinear nature and also due to the fact that even powers of the inverse metric gives a ghost-like higher-order kinetic-like term. The vacuum state is, however, stable. Finally, we show that at sufficiently low energies, our Hamiltonians in the simplest cases, are stable against time-dependent perturbations.

Keywords

Effective Field Theories Sigma Models Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556.MathSciNetCrossRefGoogle Scholar
  2. [2]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127.ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Zaks, Derivation of the Skyrme-Witten lagrangian from QCD, Nucl. Phys. B 260 (1985) 241 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964) 1252 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    G.S. Adkins and C.R. Nappi, Stabilization of chiral solitons via vector mesons, Phys. Lett. B 137 (1984) 251.ADSCrossRefGoogle Scholar
  9. [9]
    A. Jackson et al., A modified Skyrmion, Phys. Lett. B 154 (1985) 101.ADSCrossRefGoogle Scholar
  10. [10]
    L. Marleau, The Skyrme model and higher order terms, Phys. Lett. B 235 (1990) 141 [Erratum ibid. B 244 (1990) 580] [INSPIRE].
  11. [11]
    L. Marleau, Modifying the Skyrme model: pion mass and higher derivatives, Phys. Rev. D 43 (1991) 885 [INSPIRE].ADSGoogle Scholar
  12. [12]
    L. Marleau, All orders skyrmions, Phys. Rev. D 45 (1992) 1776 [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    L. Marleau and J.F. Rivard, A generating function for all orders skyrmions, Phys. Rev. D 63 (2001) 036007 [hep-ph/0011052] [INSPIRE].
  14. [14]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large-N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].
  16. [16]
    S.B. Gudnason and M. Nitta, Baryonic sphere: a spherical domain wall carrying baryon number, Phys. Rev. D 89 (2014) 025012 [arXiv:1311.4454] [INSPIRE].
  17. [17]
    S.B. Gudnason and M. Nitta, Incarnations of Skyrmions, Phys. Rev. D 90 (2014) 085007 [arXiv:1407.7210] [INSPIRE].
  18. [18]
    S.B. Gudnason and M. Nitta, Baryonic torii: toroidal baryons in a generalized Skyrme model, Phys. Rev. D 91 (2015) 045027 [arXiv:1410.8407] [INSPIRE].
  19. [19]
    S.B. Gudnason and M. Nitta, Fractional Skyrmions and their molecules, Phys. Rev. D 91 (2015) 085040 [arXiv:1502.06596] [INSPIRE].
  20. [20]
    S.B. Gudnason and M. Nitta, Skyrmions confined as beads on a vortex ring, Phys. Rev. D 94 (2016) 025008 [arXiv:1606.00336] [INSPIRE].
  21. [21]
    E.A. Bergshoeff, R.I. Nepomechie and H.J. Schnitzer, Supersymmetric Skyrmions in four-dimensions, Nucl. Phys. B 249 (1985) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    L. Freyhult, The Supersymmetric extension of the Faddeev model, Nucl. Phys. B 681 (2004) 65 [hep-th/0310261] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    J.M. Queiruga, Skyrme-like models and supersymmetry in 3 + 1 dimensions, Phys. Rev. D 92 (2015) 105012 [arXiv:1508.06692] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    S.B. Gudnason, M. Nitta and S. Sasaki, A supersymmetric Skyrme model, JHEP 02 (2016) 074 [arXiv:1512.07557] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Nakamula, S. Sasaki and K. Takesue, Atiyah-Manton construction of Skyrmions in eight dimensions, JHEP 03 (2017) 076 [arXiv:1612.06957] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A.D. Jackson, C. Weiss and A. Wirzba, Summing skyrmions, Nucl. Phys. A 529 (1991) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.P. Longpre and L. Marleau, Simulated annealing for generalized Skyrme models, Phys. Rev. D 71 (2005) 095006 [hep-ph/0502253] [INSPIRE].
  28. [28]
    J.P. Longpre and L. Marleau, Multisoliton configurations in Skyrme-like models, Can. J. Phys. 85 (2007) 679.ADSCrossRefGoogle Scholar
  29. [29]
    M. Ostrogradsky, Mémoire sur les équations différentielles relatives au problème des isopérimètres, Mem. Ac. Imp. Sci. 4 (1850) 385.Google Scholar
  30. [30]
    R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia 10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    A. Pais and G.E. Uhlenbeck, On field theories with nonlocalized action, Phys. Rev. 79 (1950) 145 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    N.S. Manton, Geometry of Skyrmions, Commun. Math. Phys. 111 (1987) 469 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    G.E. Andrews, The theory of partitions, Cambridge University Press, Cambridge U.K. (1998).MATHGoogle Scholar
  34. [34]
    J.F. Donoghue, Quartic propagators, negative norms and the physical spectrum, Phys. Rev. D 96 (2017) 044007 [arXiv:1704.01533] [INSPIRE].
  35. [35]
    C.J. Halcrow, Vibrational quantisation of the B = 7 Skyrmion, Nucl. Phys. B 904 (2016) 106 [arXiv:1511.00682] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    C. Adam, M. Haberichter, T. Romanczukiewicz and A. Wereszczynski, Radial vibrations of BPS skyrmions, Phys. Rev. D 94 (2016) 096013 [arXiv:1607.04286] [INSPIRE].
  37. [37]
    C.J. Halcrow, C. King and N.S. Manton, A dynamical α-cluster model of 16 O, Phys. Rev. C 95 (2017) 031303 [arXiv:1608.05048] [INSPIRE].
  38. [38]
    A.V. Smilga, Ghost-free higher-derivative theory, Phys. Lett. B 632 (2006) 433 [hep-th/0503213] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A.V. Smilga, Comments on the dynamics of the Pais-Uhlenbeck oscillator, SIGMA 5 (2009) 017 [arXiv:0808.0139] [INSPIRE].MathSciNetMATHGoogle Scholar
  40. [40]
    M. Pavšič, Stable self-interacting Pais-Uhlenbeck oscillator, Mod. Phys. Lett. A 28 (2013) 1350165 [arXiv:1302.5257] [INSPIRE].ADSMATHGoogle Scholar
  41. [41]
    M. Pavšič, Pais-Uhlenbeck oscillator and negative energies, Int. J. Geom. Meth. Mod. Phys. 13 (2016)1630015 [arXiv:1607.06589] [INSPIRE].
  42. [42]
    M. Eto, M. Nitta, K. Ohashi and D. Tong, Skyrmions from instantons inside domain walls, Phys. Rev. Lett. 95 (2005) 252003 [hep-th/0508130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, Higher derivative corrections to non-Abelian vortex effective theory, Prog. Theor. Phys. 128 (2012) 67 [arXiv:1204.0773] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    S.B. Gudnason, M. Nitta and N. Sawado, Gravitating BPS Skyrmions, JHEP 12 (2015) 013 [arXiv:1510.08735] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    S.B. Gudnason, M. Nitta and N. Sawado, Black hole Skyrmion in a generalized Skyrme model, JHEP 09 (2016) 055 [arXiv:1605.07954] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    C. Adam, O. Kichakova, Ya. Shnir and A. Wereszczynski, Hairy black holes in the general Skyrme model, Phys. Rev. D 94 (2016) 024060 [arXiv:1605.07625] [INSPIRE].
  47. [47]
    I. Perapechka and Y. Shnir, Generalized Skyrmions and hairy black holes in asymptotically AdS 4 spacetime, Phys. Rev. D 95 (2017) 025024 [arXiv:1612.01914] [INSPIRE].
  48. [48]
    J.M. Speight, A pure Skyrme instanton, Phys. Lett. B 659 (2008) 429 [hep-th/0703198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    S.B. Gudnason, M. Nitta and S. Sasaki, Topological solitons in the supersymmetric Skyrme model, JHEP 01 (2017) 014 [arXiv:1608.03526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, N = 1 supersymmetric extension of the baby Skyrme model, Phys. Rev. D 84 (2011) 025008 [arXiv:1105.1168] [INSPIRE].
  51. [51]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, Extended Supersymmetry and BPS solutions in baby Skyrme models, JHEP 05 (2013) 108 [arXiv:1304.0774] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M. Nitta and S. Sasaki, BPS states in supersymmetric chiral models with higher derivative terms, Phys. Rev. D 90 (2014) 105001 [arXiv:1406.7647] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Bolognesi and W. Zakrzewski, Baby Skyrme model, near-BPS approximations and supersymmetric extensions, Phys. Rev. D 91 (2015) 045034 [arXiv:1407.3140] [INSPIRE].
  54. [54]
    M. Nitta and S. Sasaki, Higher derivative corrections to manifestly supersymmetric nonlinear realizations, Phys. Rev. D 90 (2014) 105002 [arXiv:1408.4210] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Nitta and S. Sasaki, Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models, Phys. Rev. D 91 (2015) 125025 [arXiv:1504.08123] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan

Personalised recommendations