Advertisement

Journal of High Energy Physics

, 2016:162 | Cite as

A scenario of heavy but visible baryonic dark matter

  • Ran HuoEmail author
  • Shigeki Matsumoto
  • Yue-Lin Sming Tsai
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics

Abstract

We consider a model in which dark matter is a composite baryon of a dark sector governed by SU(3) gauge theory, with vector-like quarks also charged under U(1) Y . The model provides simple answer to the dark matter stability problem: it is a result of the accidental dark baryon number conservation. And with an analogy to QCD, all physical quantities of the dark matter can be calculated by rescaling the QCD experimental results. According to the thermal freeze-out mechanism the mass of the dark matter is predicted to be \( \mathcal{O}(100) \) TeV in order to achieve a correct relic abundance. Such heavy dark matter is in general hard for detection due to small dark matter number density in the universe. However, dark baryon number in our model is not necessarily strictly preserved thanks to operators suppressed by the Planck scale, and such decay operator results in a decay lifetime marginal to the current detection bound. We show our model with \( \mathcal{O}\left({10}^{27}\right) \) s dark matter decay life time can explain the AMS-02 anti-proton data, if it is experimentally interpreted as an access, although some theoretical uncertainty may weaken its significance. We also investigate other phenomena of this model such as the extragalactic gamma ray and neutrino signatures.

Keywords

Cosmology of Theories beyond the SM Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  2. [2]
    S. Nussinov, TEchnocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R.S. Chivukula and T.P. Walker, Technicolor Cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark Matter from new Technicolor Theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
  6. [6]
    H. Murayama and J. Shu, Topological Dark Matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Low-Scale Gauge Mediation and Composite Messenger Dark Matter, JHEP 04 (2010) 119 [arXiv:0912.1683] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Ibarra, A.S. Lamperstorfer, S. López-Gehler, M. Pato and G. Bertone, On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter, JCAP 09 (2015) 048 [arXiv:1503.06797] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  14. [14]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  15. [15]
    W. Bruckner et al., Measurements of the Anti-proton - Proton Annihilation Cross-section in the Beam Momentum Range Between 180-MeV/c and 600-MeV/c, Z. Phys. A 335 (1990) 217 [INSPIRE].ADSGoogle Scholar
  16. [16]
    OBELIX collaboration, A. Bertin et al., \( \overline{p}p \) annihilation cross-section at very low-energy, Phys. Lett. B 369 (1996) 77 [INSPIRE].
  17. [17]
    OBELIX collaboration, A. Benedettini et al., \( \overline{p}p \) partial cross-sections at low energy, Nucl. Phys. Proc. Suppl. 56 (1997) 58 [INSPIRE].
  18. [18]
    A. Zenoni et al., New measurements of the \( \overline{p}p \) annihilation cross-section at very low-energy, Phys. Lett. B 461 (1999) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    BROOKHAVEN-HOUSTON-PENNSYLVANIA STATE-RICE collaboration, T. Armstrong et al., Measurement of Anti-neutron Proton Total and Annihilation Cross-sections From 100-MeV/c to 500-MeV/c, Phys. Rev. D 36 (1987) 659 [INSPIRE].
  20. [20]
    OBELIX collaboration, A. Bertin et al., \( \overline{n}p \) annihilation in flight in two mesons in the momentum range between 50-MeV/c and 400-MeV/c with OBELIX, Nucl. Phys. Proc. Suppl. 56 (1997) 227 [INSPIRE].
  21. [21]
    Y. Aoki, E. Shintani and A. Soni, Proton decay matrix elements on the lattice, Phys. Rev. D 89 (2014) 014505 [arXiv:1304.7424] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Fukugita, T.T. Yanagida, Physics of Neutrinos: And Applications to Astrophysics, Springer, (2003).Google Scholar
  23. [23]
    D.H. Wilkinson, Analysis of neutron β-decay, Nucl. Phys. A 377 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  26. [26]
    AMS-02 collaboration, Talks at the AMS Days at CERN - The Future of Cosmic Ray Physics and Latest Results, CERN, 15-17 April 2015.Google Scholar
  27. [27]
    F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].
  28. [28]
    T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties, Phys. Rev. D 77 (2008) 063527 [arXiv:0712.2312] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Kappl, A. Reinert and M.W. Winkler, AMS-02 Antiprotons Reloaded, JCAP 10 (2015) 034 [arXiv:1506.04145] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, JCAP 09 (2015) 023 [arXiv:1504.04276] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo and M. Viel, Particle dark matter searches outside the Local Group, Phys. Rev. Lett. 114 (2015) 241301 [arXiv:1503.05922] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Ando and K. Ishiwata, Constraints on decaying dark matter from the extragalactic gamma-ray background, JCAP 05 (2015) 024 [arXiv:1502.02007] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Fermi-LAT collaboration, M. Ackermann et al., Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background, JCAP 09 (2015) 008 [arXiv:1501.05464] [INSPIRE].
  34. [34]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  35. [35]
    Fermi-LAT collaboration, M. Ackermann et al., GeV Observations of Star-forming Galaxies with Fermi LAT, Astrophys. J. 755 (2012) 164 [arXiv:1206.1346] [INSPIRE].
  36. [36]
    M. Di Mauro, F. Calore, F. Donato, M. Ajello and L. Latronico, Diffuse γ-ray emission from misaligned active galactic nuclei, Astrophys. J. 780 (2014) 161 [arXiv:1304.0908] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Inoue, Contribution of the Gamma-ray Loud Radio Galaxies Core Emissions to the Cosmic MeV and GeV Gamma-Ray Background Radiation, Astrophys. J. 733 (2011) 66 [arXiv:1103.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    IceCube collaboration, M.G. Aartsen et al., Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, Phys. Rev. D 91 (2015) 022001 [arXiv:1410.1749] [INSPIRE].
  39. [39]
    IceCube collaboration, M.G. Aartsen et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101 [arXiv:1405.5303] [INSPIRE].

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ran Huo
    • 1
    Email author
  • Shigeki Matsumoto
    • 1
  • Yue-Lin Sming Tsai
    • 1
  • Tsutomu T. Yanagida
    • 1
  1. 1.Kavli IPMU (WPI), UTIAS, The University of TokyoKashiwaJapan

Personalised recommendations