Advertisement

Journal of High Energy Physics

, 2016:158 | Cite as

The excitation of the global symmetry-breaking vacuum in composite Higgs models

  • Sylvain FichetEmail author
  • Gero von Gersdorff
  • Eduardo Pontón
  • Rogerio Rosenfeld
Open Access
Regular Article - Theoretical Physics

Abstract

We consider scenarios of Higgs compositeness where the Higgs doublet arises as a pseudo-Nambu Goldstone boson. Our focus is the physical scalar (“radial”) excitation associated with the global symmetry breaking vacuum, which we call the global Higgs. For the minimal case of a SO(5)/SO(4) coset, the couplings of the global Higgs to Standard Model (SM) particles are fully determined by group theoretical factors and two decay constants. The global Higgs also couples to the composite resonances of the theory, inducing an interaction with the SM gauge bosons at one-loop. We thoroughly analyze representative fermionic sectors, considering a global Higgs both in the 5 and 14 representations of SO(5) and taking into account the renormalization group evolution of couplings in the composite sector. We derive the one-loop effective couplings and all decays of the global Higgs, showing that its decay width over mass can range from \( \mathcal{O}\left(1{0}^{-3}\right) \) to \( \mathcal{O}(1) \). Because of the multiplicity of the resonances, the coupling of the global Higgs to gluons is sizeable, potentially opening a new window into composite models at the LHC.

Keywords

Technicolor and Composite Models Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1-316 [arXiv:1506.01961] [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP 11 (2015) 158 [arXiv:1505.05488] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Feruglio, B. Gavela, K. Kanshin, P.A.N. Machado, S. Rigolin and S. Saa, The minimal linear σ-model for the Goldstone Higgs, JHEP 06 (2016) 038 [arXiv:1603.05668] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. von Gersdorff, E. Pontón and R. Rosenfeld, The Dynamical Composite Higgs, JHEP 06 (2015) 119 [arXiv:1502.07340] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Terazawa, K. Akama and Y. Chikashige, Unified Model of the Nambu-Jona-Lasinio Type for All Elementary Particle Forces, Phys. Rev. D 15 (1977) 480 [INSPIRE].ADSGoogle Scholar
  6. [6]
    W.A. Bardeen, C.T. Hill and M. Lindner, Minimal Dynamical Symmetry Breaking of the Standard Model, Phys. Rev. D 41 (1990) 1647 [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  8. [8]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Mrazek and A. Wulzer, A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    M. Carena, L. Da Rold and E. Pontón, Minimal Composite Higgs Models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Matsedonskyi, G. Panico and A. Wulzer, Top Partners Searches and Composite Higgs Models, JHEP 04 (2016) 003 [arXiv:1512.04356] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Berger, J. Hubisz and M. Perelstein, A Fermionic Top Partner: Naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    G. Cacciapaglia, A. Deandrea, L. Panizzi, S. Perries and V. Sordini, Heavy Vector-like quark with charge 5/3 at the LHC, JHEP 03 (2013) 004 [arXiv:1211.4034] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Kearney, A. Pierce and J. Thaler, Exotic Top Partners and Little Higgs, JHEP 10 (2013) 230 [arXiv:1306.4314] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Angelescu, A. Djouadi and G. Moreau, Vector-like top/bottom quark partners and Higgs physics at the LHC, Eur. Phys. J. C 76 (2016) 99 [arXiv:1510.07527] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D.B. Kaplan, Flavor at SSC energies: A new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Fichet, G. von Gersdorff, E. Pontón and R. Rosenfeld, The Global Higgs as a Signal for Compositeness at the LHC, arXiv:1608.01995 [INSPIRE].
  22. [22]
    A. Azatov, R. Contino, A. Di Iura and J. Galloway, New Prospects for Higgs Compositeness in h, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].ADSGoogle Scholar
  23. [23]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb-1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  24. [24]
    ATLAS collaboration, Searches for heavy diboson resonances in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, arXiv:1606.04833[INSPIRE].
  25. [25]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted W and Z bosons at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-002 (2015).
  26. [26]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  27. [27]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015) .
  28. [28]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sylvain Fichet
    • 1
    Email author
  • Gero von Gersdorff
    • 2
  • Eduardo Pontón
    • 1
  • Rogerio Rosenfeld
    • 1
  1. 1.ICTP South American Institute for Fundamental Research & Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil
  2. 2.Departamento de FısicaPontifícia Universidade Católica de Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations