Advertisement

Journal of High Energy Physics

, 2016:142 | Cite as

Analytic black branes in Lifshitz-like backgrounds and thermalization

  • Irina Ya. Aref’eva
  • Anastasia A. Golubtsova
  • Eric Gourgoulhon
Open Access
Regular Article - Theoretical Physics

Abstract

Using black brane solutions in 5d Lifshitz-like backgrounds with arbitrary dynamical exponent ν, we construct the Vaidya geometry, asymptoting to the Lifshitz-like spacetime, which represents a thin shell infalling at the speed of light. We apply the new Lifshitz-Vaidya background to study the thermalization process of the quark-gluon plasma via the thin shell approach previously successfully used in several backgrounds. We find that the thermalization depends on the chosen direction because of the spatial anisotropy. The plasma thermalizes thus faster in the transversal direction than in the longitudinal one. To probe the system described by the Lifshitz-like backgrounds, we also calculate the holographic entanglement entropy for the subsystems delineated along both transversal and longitudinal directions. We show that the entropy has some universality in the behavior for both subsystems. At the same time, we find that certain characteristics strongly depend on the critical exponent ν.

Keywords

Gauge-gravity correspondence Holography and quark-gluon plasmas AdSCFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  2. [2]
    I.Ya. Aref’eva, Holographic approach to quark-gluon plasma in heavy ion collisions, Phys. Usp. 57 (2014) 527.Google Scholar
  3. [3]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Strickland, Thermalization and isotropization in heavy-ion collisions, Pramana 84 (2015) 671 [arXiv:1312.2285] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Giataganas, Observables in strongly coupled anisotropic theories, PoS(Corfu2012)122 [arXiv:1306.1404] [INSPIRE].
  7. [7]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].ADSGoogle Scholar
  12. [12]
    I. Ya. Aref’eva, A.A. Bagrov and E.A. Guseva, Critical formation of trapped surfaces in the collision of non-expanding gravitational shock waves in de Sitter space-time, JHEP 12 (2009) 009 [arXiv:0905.1087] [INSPIRE].
  13. [13]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I.Y. Arefeva, A.A. Bagrov and E.O. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I. Ya. Aref’eva, E.O. Pozdeeva and T.O. Pozdeeva, Holographic estimation of multiplicity and membranes collision in modified spaces AdS 5, Theor. Math. Phys. 176 (2013) 861 [arXiv:1401.1180] [INSPIRE].
  17. [17]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. Ya. Arefeva and I.V. Volovich, On holographic thermalization and dethermalization of quark-gluon plasma, arXiv:1211.6041 [INSPIRE].
  22. [22]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  23. [23]
    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    I. Ya. Aref’eva and A.A. Golubtsova, Shock waves in Lifshitz-like spacetimes, JHEP 04 (2015) 011 [arXiv:1410.4595] [INSPIRE].
  25. [25]
    T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    D.S. Ageev, I. Ya. Aref’eva, A.A. Golubtsova and E. Gourgoulhon, Holographic Wilson loops in Lifshitz-like backgrounds, arXiv:1606.03995 [INSPIRE].
  28. [28]
    SageManifolds webpage, http://sagemanifolds.obspm.fr/.
  29. [29]
    SageMath webpage, http://www.sagemath.org/.
  30. [30]
    S. Chakrabortty, S. Chakraborty and N. Haque, Brownian motion in strongly coupled, anisotropic Yang-Mills plasma: a holographic approach, Phys. Rev. D 89 (2014) 066013 [arXiv:1311.5023] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Giataganas and H. Soltanpanahi, Heavy quark diffusion in strongly coupled anisotropic plasmas, JHEP 06 (2014) 047 [arXiv:1312.7474] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Cheng, X.-H. Ge and S.-J. Sin, Anisotropic plasma with a chemical potential and scheme-independent instabilities, Phys. Lett. B 734 (2014) 116 [arXiv:1404.1994] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  34. [34]
    I. Ya. Aref’eva, Formation time of quark-gluon plasma in heavy-ion collisions in the holographic shock wave model, Theor. Math. Phys. 184 (2015) 1239 [Teor. Mat. Fiz. 184 (2015) 398] [arXiv:1503.02185] [INSPIRE].
  35. [35]
    M. Alishahiha, A.F. Astaneh and M.R. Mohammadi Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:1401.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    V. Keranen and L. Thorlacius, Thermal correlators in holographic models with Lifshitz scaling, Class. Quant. Grav. 29 (2012) 194009 [arXiv:1204.0360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].ADSGoogle Scholar
  40. [40]
    U. Kol, C. Núñez, D. Schofield, J. Sonnenschein and M. Warschawski, Confinement, phase transitions and non-locality in the entanglement entropy, JHEP 06 (2014) 005 [arXiv:1403.2721] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Fischetti and D. Marolf, Complex entangling surfaces for AdS and Lifshitz black holes?, Class. Quant. Grav. 31 (2014) 214005 [arXiv:1407.2900] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    P. Fonda, D. Seminara and E. Tonni, On shape dependence of holographic entanglement entropy in AdS 4 /CFT 3, JHEP 12 (2015) 037 [arXiv:1510.03664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    R. Kallosh and A.W. Peet, Dilaton black holes near the horizon, Phys. Rev. D 46 (1992) R5223 [hep-th/9209116] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    E. D’Hoker and P. Kraus, Charge expulsion from black brane horizons and holographic quantum criticality in the plane, JHEP 09 (2012) 105 [arXiv:1202.2085] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Vaidya, The external field of a radiating star in general relativity, Curr. Sci. 12 (1943) 183.ADSMathSciNetGoogle Scholar
  48. [48]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    E. Caceres, M. Sanchez and J. Virrueta, Holographic entanglement entropy in time dependent Gauss-Bonnet gravity, arXiv:1512.05666 [INSPIRE].
  54. [54]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Irina Ya. Aref’eva
    • 1
  • Anastasia A. Golubtsova
    • 2
    • 3
    • 4
  • Eric Gourgoulhon
    • 5
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear researchDubnaRussia
  3. 3.Dubna State UniversityDubnaRussia
  4. 4.Peoples’ Friendship University of RussiaMoscowRussia
  5. 5.Laboratoire Univers et Théories, Observatoire de Paris, CNRS, Université Paris DiderotMeudonFrance

Personalised recommendations