Journal of High Energy Physics

, 2016:108 | Cite as

Holographic heavy ion collisions with baryon charge

  • Jorge Casalderrey-Solana
  • David Mateos
  • Wilke van der Schee
  • Miquel Triana
Open Access
Regular Article - Theoretical Physics


We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.


AdS-CFT Correspondence Gauge-gravity correspondence Holography and quark-gluon plasmas Quark-Gluon Plasma 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal Coherence in a Holographic Model of Asymmetric Collisions, Phys. Rev. Lett. 112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  6. [6]
    P.M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys. E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP 07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. D 70 (2004) 089901] [hep-th/0304064] [INSPIRE].
  9. [9]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    W. van der Schee, Gravitational collisions and the quark-gluon plasma, arXiv:1407.1849 [INSPIRE].
  14. [14]
    P.M. Chesler, N. Kilbertus and W. van der Schee, Universal hydrodynamic flow in holographic planar shock collisions, JHEP 11 (2015) 135 [arXiv:1507.02548] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric Collision of Two Shock Waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Arnold, P. Romatschke and W. van der Schee, Absence of a local rest frame in far from equilibrium quantum matter, JHEP 10 (2014) 110 [arXiv:1408.2518] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    BRAHMS collaboration, I.G. Bearden et al., Nuclear stopping in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. Lett. 93 (2004) 102301 [nucl-ex/0312023] [INSPIRE].
  18. [18]
    E917 collaboration, B.B. Back et al., Baryon rapidity loss in relativistic Au + Au collisions, Phys. Rev. Lett. 86 (2001) 1970 [nucl-ex/0003007] [INSPIRE].
  19. [19]
    NA49 collaboration, H. Appelshauser et al., Baryon stopping and charged particle distributions in central P b + P b collisions at 158 GeV per nucleon, Phys. Rev. Lett. 82 (1999) 2471 [nucl-ex/9810014] [INSPIRE].
  20. [20]
    W. van der Schee and B. Schenke, Rapidity dependence in holographic heavy ion collisions, Phys. Rev. C 92 (2015) 064907 [arXiv:1507.08195] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Avsar, E. Iancu, L. McLerran and D.N. Triantafyllopoulos, Shockwaves and deep inelastic scattering within the gauge/gravity duality, JHEP 11 (2009) 105 [arXiv:0907.4604] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
  23. [23]
    E. Iancu and A. Mukhopadhyay, A semi-holographic model for heavy-ion collisions, JHEP 06 (2015) 003 [arXiv:1410.6448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jorge Casalderrey-Solana
    • 1
    • 2
  • David Mateos
    • 1
    • 3
  • Wilke van der Schee
    • 4
  • Miquel Triana
    • 1
  1. 1.Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC)Universitat de BarcelonaBarcelonaSpain
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  3. 3.ICREABarcelonaSpain
  4. 4.Center of Theoretical Physics, Massachusets Institute of TechnologyCambridgeU.S.A.

Personalised recommendations