Journal of High Energy Physics

, 2016:104 | Cite as

Suppression of two-bounce windows in kink-antikink collisions

  • F. C. Simas
  • Adalto R. Gomes
  • K. Z. Nobrega
  • J. C. R. E. Oliveira
Open Access
Regular Article - Theoretical Physics


We consider a class of topological defects in (1, 1)-dimensions with a deformed ϕ 4 kink structure whose stability analysis leads to a Schrödinger-like equation with a zero-mode and at least one vibrational (shape) mode. We are interested in the dynamics of kink-antikink collisions, focusing on the structure of two-bounce windows. For small deformation and for one or two vibrational modes, the observed two-bounce windows are explained by the standard mechanism of a resonant effect between the first vibrational and the translational modes. With the increasing of the deformation, the effect of the appearance of more than one vibrational mode is the gradual disappearance of the initial two-bounce windows. The total suppression of two-bounce windows even with the presence of a vibrational mode offers a counterexample from what expected from the standard mechanism. For extremely large deformation the defect has a 2-kink structure with one translational and one vibrational mode, and the standard structure of two-bounce windows is recovered.


Field Theories in Lower Dimensions Solitons Monopoles and Instantons Nonperturbative Effects 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge (2006).zbMATHGoogle Scholar
  2. [2]
    N. Manton and P. Sutcliffe, Topological Solitons, Cambridge University Press, Cambridge (2004).CrossRefzbMATHGoogle Scholar
  3. [3]
    P.P. Avelino, J.P.M. de Carvalho, C.J.A.P. Martins and J.C.R.E. Oliveira, Can our universe be inomogeneous on large subhorizon scales?, Phys. Lett. B 515 (2001) 148 [astro-ph/0004227] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    Ya.B. Zel’dovich, I.Yu. Kobzarev and L.B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [Sov. Phys. JETP 40 (1975) 1] [INSPIRE].
  5. [5]
    S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble Collisions in the Very Early Universe, Phys. Rev. D 26 (1982) 2681 [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    M. Bucher, A Brane world universe from colliding bubbles, Phys. Lett. B 530 (2002) 1 [hep-th/0107148] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Braden, J.R. Bond and L. Mersini-Houghton, Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations, JCAP 03 (2015) 007 [arXiv:1412.5591] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A.E. Kudryavtsev, Solitonlike solutions for a Higgs scalar field, JETP Lett. 22 (1975) 82.ADSGoogle Scholar
  9. [9]
    T. Sugiyama, Kink-Antikink Collisions in the Two-Dimensional ϕ 4 Model, Prog. Theor. Phys. 61 (1979) 1550 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Moshir, Soliton-antisoliton scattering and capture in λφ 4 theory, Nucl. Phys. B 185 (1981) 318 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C.A. Wingate, Numerical Search for a ϕ 4 Breather Mode, SIAM J. Appl. Math. 43 (1983) 120.MathSciNetCrossRefGoogle Scholar
  12. [12]
    T.I. Belova and A.E. Kudryavtsev, Quasi-periodic orbits in the scalar classical λϕ 4 field theory, Physica D 32 (1988) 18.ADSMathSciNetGoogle Scholar
  13. [13]
    D.K. Campbell, J.S. Schonfeld and C.A. Wingate, Resonance Structure in Kink-antikink interactions in ϕ 4 theory, Physica D 9 (1983) 1.ADSGoogle Scholar
  14. [14]
    D.K. Campbell, M. Peyrard and P. Soldano, Kink-antikink interactions in the double sine-Gordon equation, Physica D 19 (1986) 165 [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    D.K. Campbell and M. Peyrard, Solitary wave collisions revisited, Physica D 18 (1986) 47 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    P. Anninos, S. Oliveira and R.A. Matzner, Fractal structure in the scalar λ(φ 2 − 1)2 theory, Phys. Rev. D 44 (1991) 1147 [INSPIRE].ADSGoogle Scholar
  17. [17]
    V.A. Gani and A.E. Kudryavtsev, Kink-antikink interactions in the double sine-Gordon equation and the problem of resonance frequencies, Phys. Rev. E 60 (1999) 3305 [cond-mat/9809015] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.H. Goodman and R. Haberman, Kink-Antikink Collisions in the ϕ 4 Equation: The n-Bounce Resonance and the Separatrix Map, SIAM J. Appl. Dyn. Syst. 4 (2005) 1195.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    V.A. Gani, V. Lensky and M.A. Lizunova, Kink excitation spectra in the (1 + 1)-dimensional φ 8 model, JHEP 08 (2015) 147 [arXiv:1506.02313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Aubry, Unified approach to interpretation of displacive and order-disorder systems. II. Displacive systems, J. Chem. Phys. 64 (1976) 3392.ADSCrossRefGoogle Scholar
  21. [21]
    Z. Fei, L. Vázquez and Y.S. Kivshar, Resonant kink impurity interactions in the ϕ 4 model, Phys. Rev. A 46 (1992) 5214 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Z. Fei, Y.S. Kivshar and L. Vázquez, Resonant kink-impurity interactions in the sine-Gordon model, Phys. Rev. A 45 (1992) 6019.ADSGoogle Scholar
  23. [23]
    Y.S. Kivshar, Z. Fei and L. Vázquez, Resonant soliton-impurity interactions, Phys. Rev. Lett. 67 (1991) 1177 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R.H. Goodman and R. Haberman, Interaction of sine-Gordon kinks with defects: The two-bounce resonance, Physica D 195 (2004) 303.ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    J. Yang and Y. Tan, Fractal structure in the collision of vector solitons, Phys. Rev. Lett. 85 (2000) 3624.ADSCrossRefGoogle Scholar
  26. [26]
    Y. Tan and J. Yang, Complexity and regularity of vector-soliton collisions, Phys. Rev. E 64 (2001) 056616.ADSGoogle Scholar
  27. [27]
    R.H. Goodman and R. Haberman, Vector soliton interactions in birefringent optical fibers, Phys. Rev. E 71 (2005) 055065.MathSciNetGoogle Scholar
  28. [28]
    T.I. Belova and A.E. Kudryavtsev, Solitons and their interactions in classical field theory, Phys. Usp. 40 (1997) 359 [Usp. Fiz. Nauk 167 (1997) 377] [INSPIRE].
  29. [29]
    P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the ϕ 6 model, Phys. Rev. Lett. 107 (2011) 091602 [arXiv:1101.5951] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    V.A. Gani, A.E. Kudryavtsev and M.A. Lizunova, Kink interactions in the (1 + 1)-dimensional ϕ 6 model, Phys. Rev. D 89 (2014) 125009 [arXiv:1402.5903] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. de Souza Dutra, Continuously deformable topological structure, Physica D 238 (2009) 798.ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    D. Bazeia, J. Menezes and R. Menezes, New global defect structures, Phys. Rev. Lett. 91 (2003) 241601 [hep-th/0305234] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E.B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [INSPIRE].MathSciNetGoogle Scholar
  34. [34]
    M.K. Prasad and C.M. Sommerfield, An Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.-L. Gervais and B. Sakita, Extended Particles in Quantum Field Theories, Phys. Rev. D 11 (1975) 2943 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.-L. Gervais, A. Jevicki and B. Sakita, Perturbation Expansion Around Extended Particle States in Quantum Field Theory, Phys. Rev. D 12 (1975) 1038 [INSPIRE].ADSGoogle Scholar
  37. [37]
    N.H. Christ and T.D. Lee, Quantum Expansion of Soliton Solutions, Phys. Rev. D 12 (1975) 1606 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    T.S. Mendonça and H.P. de Oliveira, A note about a new class of two-kinks, JHEP 06 (2015) 133 [arXiv:1504.07315] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T.S. Mendonça and H.P. de Oliveira, The collision of two-kinks defects, JHEP 09 (2015) 120 [arXiv:1502.03870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • F. C. Simas
    • 1
  • Adalto R. Gomes
    • 2
  • K. Z. Nobrega
    • 3
  • J. C. R. E. Oliveira
    • 4
    • 5
  1. 1.Centro de Ciências Agrárias e Ambientais-CCAA, Universidade Federal do Maranhão (UFMA)ChapadinhaBrazil
  2. 2.Departamento de Física, Campus Universitário do BacangaUniversidade Federal do Maranhão (UFMA)São LuísBrazil
  3. 3.Departamento de Eletro-Eletrônica, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA)São LuísBrazil
  4. 4.Centro de Física do PortoPortoPortugal
  5. 5.Departamento de Engenharia Física da Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations