Variational principle for theories with dissipation from analytic continuation

Abstract

The analytic continuation from the Euclidean domain to real space of the one-particle irreducible quantum effective action is discussed in the context of generalized local equilibrium states. Discontinuous terms associated with dissipative behavior are parametrized in terms of a conveniently defined sign operator. A generalized variational principle is then formulated, which allows to obtain causal and real dissipative equations of motion from the analytically continued quantum effective action. Differential equations derived from the implications of general covariance determine the space-time evolution of the temperature and fluid velocity fields and allow for a discussion of entropy production including a local form of the second law of thermodynamics.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Schwinger, The special canonical group, P. Natl. Acad. Sci. USA 46 (1960) 1401.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].

  4. [4]

    L.P. Kadanoff and G. Baym, Quantum statistical mechanics, Benjamin, New York U.S.A. (1962).

    MATH  Google Scholar 

  5. [5]

    P. Danielewicz, Quantum theory of nonequilibrium processes. I, Annals Phys. 152 (1984) 239 [INSPIRE].

  6. [6]

    K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rept. 118 (1985) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    E. Calzetta and B.L. Hu, Nonequilibrium quantum fields: closed-time-path effective action, Wigner function and Boltzmann equation, Phys. Rev. D 37 (1988) 2878 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    E.A. Calzetta and B.L. Hu, Nonequilibrium quantum field theory, Cambridge University Press, Cambridge U.K. (2008) [INSPIRE].

  9. [9]

    J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739 (2005) 3 [hep-ph/0409233] [INSPIRE].

  10. [10]

    J. Berges, Nonequilibrium quantum fields: from cold atoms to cosmology, arXiv:1503.02907 [INSPIRE].

  11. [11]

    J. Rammer, Quantum field theory of non-equilibrium states, Cambridge University Press, Cambridge U.K. (2007) [INSPIRE].

  12. [12]

    A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cambridge U.K. (2011).

    Book  MATH  Google Scholar 

  13. [13]

    L.P. Kadanoff and P.C. Matrin, Hydrodynamic equations and correlation functions, Ann. Phys. (N.Y.) 24 (1963) 419 [Ann. Phys. (N.Y.) 281 (2000) 800].

  14. [14]

    P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49 (1977) 435 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases, Cambridge University Press, Cambridge U.K. (1990).

    MATH  Google Scholar 

  16. [16]

    G.S. Denicol, E. Molnár, H. Niemi and D.H. Rischke, Derivation of fluid dynamics from kinetic theory with the 14-moment approximation, Eur. Phys. J. A 48 (2012) 170 [arXiv:1206.1554] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    G.S. Denicol, H. Niemi, E. Molnár and D.H. Rischke, Derivation of transient relativistic fluid dynamics from the Boltzmann equation, Phys. Rev. D 85 (2012) 114047 [Erratum ibid. D 91 (2015) 039902] [arXiv:1202.4551] [INSPIRE].

  18. [18]

    A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of quantum field theory in statistical physics, Dover Publications (1975).

  19. [19]

    L.D. Landau and E.M. Lifshitz, Statistical physics. Part I, Course of Theoretical Physics, Butterworth-Heinemann, Oxford U.K. (1980) [INSPIRE].

  20. [20]

    T. Hayata, Y. Hidaka, T. Noumi and M. Hongo, Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method, Phys. Rev. D 92 (2015) 065008 [arXiv:1503.04535] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    N. Andersson and G.L. Comer, Relativistic fluid dynamics: physics for many different scales, Living Rev. Rel. 10 (2007) 1 [gr-qc/0605010] [INSPIRE].

  22. [22]

    S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    A. Nicolis and D.T. Son, Hall viscosity from effective field theory, arXiv:1103.2137 [INSPIRE].

  24. [24]

    S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev. D 89 (2014) 045016 [arXiv:1107.0732] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    A. Nicolis, Low-energy effective field theory for finite-temperature relativistic superfluids, arXiv:1108.2513 [INSPIRE].

  27. [27]

    J. Bhattacharya, S. Bhattacharyya and M. Rangamani, Non-dissipative hydrodynamics: effective actions versus entropy current, JHEP 02 (2013) 153 [arXiv:1211.1020] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    S. Endlich, A. Nicolis, R.A. Porto and J. Wang, Dissipation in the effective field theory for hydrodynamics: first order effects, Phys. Rev. D 88 (2013) 105001 [arXiv:1211.6461] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    N. Andersson and G.L. Comer, A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics, Class. Quant. Grav. 32 (2015) 075008 [arXiv:1306.3345] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    A. Nicolis, R. Penco and R.A. Rosen, Relativistic fluids, superfluids, solids and supersolids from a coset construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Effective actions for anomalous hydrodynamics, JHEP 03 (2014) 034 [arXiv:1312.0610] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    G. Ballesteros, The effective theory of fluids at NLO and implications for dark energy, JCAP 03 (2015) 001 [arXiv:1410.2793] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    M. Geracie and D.T. Son, Effective field theory for fluids: Hall viscosity from a Wess-Zumino-Witten term, JHEP 11 (2014) 004 [arXiv:1402.1146] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino terms for relativistic fluids, superfluids, solids and supersolids, Phys. Rev. Lett. 114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic dissipative hydrodynamics, JHEP 07 (2014) 123 [arXiv:1405.3967] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett. 114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP 05 (2015) 060 [arXiv:1502.00636] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (2015) 025 [arXiv:1502.03076] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, arXiv:1511.03646 [INSPIRE].

  41. [41]

    D. Blas, S. Floerchinger, M. Garny, N. Tetradis and U.A. Wiedemann, Large scale structure from viscous dark matter, JCAP 11 (2015) 049 [arXiv:1507.06665] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP 08 (2014) 165 [arXiv:1312.0220] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    S. Bhattacharyya, Entropy current from partition function: one example, JHEP 07 (2014) 139 [arXiv:1403.7639] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    F. Becattini and E. Grossi, Quantum relativistic fluid at global thermodynamic equilibrium in curved spacetime, arXiv:1511.05439 [INSPIRE].

  47. [47]

    S. Floerchinger, Analytic continuation of functional renormalization group equations, JHEP 05 (2012) 021 [arXiv:1112.4374] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    A.O. Caldeira and A.J. Leggett, Quantum tunneling in a dissipative system, Annals Phys. 149 (1983) 374 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. [49]

    R.D. Jordan, Effective field equations for expectation values, Phys. Rev. D 33 (1986) 444 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. [50]

    E. Calzetta and B.L. Hu, Closed-time-path functional formalism in curved space-time: application to cosmological back-reaction problems, Phys. Rev. D 35 (1987) 495 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, New York U.S.A. (1972) [INSPIRE].

  52. [52]

    W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys. 118 (1979) 341 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    W.A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative relativistic fluid theories, Phys. Rev. D 31 (1985) 725 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. [54]

    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Floerchinger.

Additional information

ArXiv ePrint: 1603.07148

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Floerchinger, S. Variational principle for theories with dissipation from analytic continuation. J. High Energ. Phys. 2016, 99 (2016). https://doi.org/10.1007/JHEP09(2016)099

Download citation

Keywords

  • Effective field theories
  • Quantum Dissipative Systems