Journal of High Energy Physics

, 2016:92 | Cite as

Covariant effective action for a Galilean invariant quantum Hall system

  • Michael Geracie
  • Kartik Prabhu
  • Matthew M. Roberts
Open Access
Regular Article - Theoretical Physics


We construct effective field theories for gapped quantum Hall systems coupled to background geometries with local Galilean invariance i.e. Bargmann spacetimes. Along with an electromagnetic field, these backgrounds include the effects of curved Galilean spacetimes, including torsion and a gravitational field, allowing us to study charge, energy, stress and mass currents within a unified framework. A shift symmetry specific to single constituent theories constraints the effective action to couple to an effective background gauge field and spin connection that is solved for by a self-consistent equation, providing a manifestly covariant extension of Hoyos and Son’s improvement terms to arbitrary order in m.


Effective field theories Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    X.G. Wen and A. Zee, Shift and spin vector: New topological quantum numbers for the Hall fluids, Phys. Rev. Lett. 69 (1992) 953 [Erratum ibid. 69 (1992) 3000] [INSPIRE].
  2. [2]
    J.E. Avron, R. Seiler and P.G. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett. 75 (1995) 697 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.E. Avron, Odd Viscosity, J. Stat. Phys. 92 (1997) 543 [physics/9712050].
  4. [4]
    N. Read, Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p x + ip y paired superfluids, Phys. Rev. B 79 (2009) 045308 [arXiv:0805.2507] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Read and E.H. Rezayi, Hall viscosity, orbital spin and geometry: paired superfluids and quantum Hall systems, Phys. Rev. B 84 (2011) 085316 [arXiv:1008.0210] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Bradlyn and N. Read, Low-energy effective theory in the bulk for transport in a topological phase, Phys. Rev. B 91 (2015) 125303 [arXiv:1407.2911] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Gromov and A.G. Abanov, Thermal Hall Effect and Geometry with Torsion, Phys. Rev. Lett. 114 (2015) 016802 [arXiv:1407.2908] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco (1973).Google Scholar
  9. [9]
    D.B. Malament, Topics in the foundations of general relativity and Newtonian gravitation theory, University of Chicago Press (2012).Google Scholar
  10. [10]
    M. Geracie, K. Prabhu and M.M. Roberts, Curved non-relativistic spacetimes, Newtonian gravitation and massive matter, J. Math. Phys. 56 (2015) 103505 [arXiv:1503.02682] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    C. Hoyos and D.T. Son, Hall Viscosity and Electromagnetic Response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Bradlyn, M. Goldstein and N. Read, Kubo formulas for viscosity: Hall viscosity, Ward identities and the relation with conductivity, Phys. Rev. B 86 (2012) 245309 [arXiv:1207.7021] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Gromov and A.G. Abanov, Density-curvature response and gravitational anomaly, Phys. Rev. Lett. 113 (2014) 266802 [arXiv:1403.5809] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].
  15. [15]
    K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Geracie, K. Prabhu and M.M. Roberts, Fields and fluids on curved non-relativistic spacetimes, JHEP 08 (2015) 042 [arXiv:1503.02680] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view, J. Math. Phys. 57 (2016) 022507 [arXiv:1412.8212] [INSPIRE].
  18. [18]
    R.M. Wald, General Relativity, The University of Chicago Press (1984).Google Scholar
  19. [19]
    K. Kuchar, Gravitation, geometry, and nonrelativistic quantum theory, Phys. Rev. D 22 (1980) 1285 [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    G.K. Karananas and A. Monin, Gauging nonrelativistic field theories using the coset construction, Phys. Rev. D 93 (2016) 064069 [arXiv:1601.03046] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Geracie, K. Prabhu and M.M. Roberts, in preparation.Google Scholar
  22. [22]
    C. Weisbuch and C. Hermann, Optical detection of conduction-electron spin resonance in GaAs, Ga1−xInxAs, and Ga1−xAlxAs, Phys. Rev. B 15 (1977) 816.ADSCrossRefGoogle Scholar
  23. [23]
    D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].
  24. [24]
    O. Andreev, More On Nonrelativistic Diffeomorphism Invariance, Phys. Rev. D 91 (2015) 024035 [arXiv:1408.7031] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    S. Moroz, C. Hoyos and L. Radzihovsky, Galilean invariance at quantum Hall edge, Phys. Rev. B 91 (2015) 195409 [Addendum ibid. B 91 (2015) 199906] [arXiv:1502.00667] [INSPIRE].
  26. [26]
    I. Tamm, Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles, Z. Phys. 71 (1931) 141 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Golkar, M.M. Roberts and D.T. Son, Effective Field Theory of Relativistic Quantum Hall Systems, JHEP 12 (2014) 138 [arXiv:1403.4279] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123 (1961) 1242 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall Effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    M. Geracie and D.T. Son, Hydrodynamics on the lowest Landau level, JHEP 06 (2015) 044 [arXiv:1408.6843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Michael Geracie
    • 1
  • Kartik Prabhu
    • 1
  • Matthew M. Roberts
    • 1
  1. 1.Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of PhysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations