Advertisement

Journal of High Energy Physics

, 2016:85 | Cite as

String theory as a higher spin theory

  • Matthias R. Gaberdiel
  • Rajesh GopakumarEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The symmetries of string theory on \( {\mathrm{AdS}}_3\times {\mathrm{S}}^3\times {\mathbb{T}}^4 \) at the dual of the symmetric product orbifold point are described by a so-called Higher Spin Square (HSS). We show that the massive string spectrum in this background organises itself in terms of representations of this HSS, just as the matter in a conventional higher spin theory does so in terms of representations of the higher spin algebra. In particular, the entire untwisted sector of the orbifold can be viewed as the Fock space built out of the multiparticle states of a single representation of the HSS, the so-called ‘minimal’ representation. The states in the twisted sector can be described in terms of tensor products of a novel family of representations that are somewhat larger than the minimal one.

Keywords

AdS-CFT Correspondence Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, Space-time and topological orbifolds, Phys. Rev. Lett. 61 (1988) 670 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G.W. Moore, Symmetries and symmetry breaking in string theory, in proceedings of the SUSY ’93 conference, ‘Supersymmetry and unification of fundamental interactions’, New Haven U.S.A. (1993) [hep-th/9308052] [INSPIRE].
  4. [4]
    A. Sagnotti, Notes on strings and higher spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP 10 (2015) 101 [arXiv:1506.02045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. Witten, Spacetime Reconstruction, talk at the John Schwarz 60-th birthday symposium, Pasadena U.S.A. (2001), http://theory.caltech.edu/jhs60/witten/1.html.
  10. [10]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
  11. [11]
    M.R. Gaberdiel and R. Gopakumar, Large- \( \mathcal{N}=4 \) holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    M.R. Gaberdiel and R. Gopakumar, Stringy symmetries and the higher spin square, J. Phys. A 48 (2015) 185402 [arXiv:1501.07236] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  15. [15]
    M.A. Vasiliev, Multiparticle extension of the higher-spin algebra, Class. Quant. Grav. 30 (2013) 104006 [arXiv:1212.6071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Bakas and E. Kiritsis, Bosonic realization of a universal W -algebra and Z parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].
  21. [21]
    M.R. Gaberdiel, K. Jin and W. Li, Perturbations of W CFTs, JHEP 10 (2013) 162 [arXiv:1307.4087] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Bekkert, G. Benkart and V. Futorny, Weyl algebra modules, math/0202222.
  23. [23]
    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3 − D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Dutta and R. Gopakumar, Free fermions and thermal AdS/CFT, JHEP 03 (2008) 011 [arXiv:0711.0133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    C. Candu and M.R. Gaberdiel, Duality in N = 2 minimal model holography, JHEP 02 (2013) 070 [arXiv:1207.6646] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M.R. Gaberdiel and M. Kelm, The continuous orbifold of \( \mathcal{N}=2 \) minimal model holography, JHEP 08 (2014) 084 [arXiv:1406.2345] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Fredenhagen and C. Restuccia, The geometry of the limit of N = 2 minimal models, J. Phys. A 46 (2013) 045402 [arXiv:1208.6136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    M.R. Gaberdiel and M. Kelm, The symmetric orbifold of N = 2 minimal models, JHEP 07 (2016) 113, [arXiv:1604.03964 [INSPIRE].
  30. [30]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Procházka, \( \mathcal{W} \) -symmetry, topological vertex and affine Yangian, arXiv:1512.07178.
  32. [32]
    M. Niedermaier, Irrational free field resolutions for W(sl(n)) and extended Sugawara construction, Commun. Math. Phys. 148 (1992) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, ETH ZurichZürichSwitzerland
  2. 2.International Centre for Theoretical Sciences-TIFRBengaluru NorthIndia

Personalised recommendations