String theory as a higher spin theory
- 189 Downloads
- 31 Citations
Abstract
The symmetries of string theory on \( {\mathrm{AdS}}_3\times {\mathrm{S}}^3\times {\mathbb{T}}^4 \) at the dual of the symmetric product orbifold point are described by a so-called Higher Spin Square (HSS). We show that the massive string spectrum in this background organises itself in terms of representations of this HSS, just as the matter in a conventional higher spin theory does so in terms of representations of the higher spin algebra. In particular, the entire untwisted sector of the orbifold can be viewed as the Fock space built out of the multiparticle states of a single representation of the HSS, the so-called ‘minimal’ representation. The states in the twisted sector can be described in terms of tensor products of a novel family of representations that are somewhat larger than the minimal one.
Keywords
AdS-CFT Correspondence Conformal Field Models in String TheoryNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [2]E. Witten, Space-time and topological orbifolds, Phys. Rev. Lett. 61 (1988) 670 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [3]G.W. Moore, Symmetries and symmetry breaking in string theory, in proceedings of the SUSY ’93 conference, ‘Supersymmetry and unification of fundamental interactions’, New Haven U.S.A. (1993) [hep-th/9308052] [INSPIRE].
- [4]A. Sagnotti, Notes on strings and higher spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [5]M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [6]M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP 10 (2015) 101 [arXiv:1506.02045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [7]M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [8]B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [9]E. Witten, Spacetime Reconstruction, talk at the John Schwarz 60-th birthday symposium, Pasadena U.S.A. (2001), http://theory.caltech.edu/jhs60/witten/1.html.
- [10]A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
- [11]M.R. Gaberdiel and R. Gopakumar, Large- \( \mathcal{N}=4 \) holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].ADSCrossRefGoogle Scholar
- [12]M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
- [13]M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [14]M.R. Gaberdiel and R. Gopakumar, Stringy symmetries and the higher spin square, J. Phys. A 48 (2015) 185402 [arXiv:1501.07236] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [15]M.A. Vasiliev, Multiparticle extension of the higher-spin algebra, Class. Quant. Grav. 30 (2013) 104006 [arXiv:1212.6071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [16]M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [17]A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [18]M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [19]E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].ADSCrossRefGoogle Scholar
- [20]I. Bakas and E. Kiritsis, Bosonic realization of a universal W -algebra and Z ∞ parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].
- [21]M.R. Gaberdiel, K. Jin and W. Li, Perturbations of W ∞ CFTs, JHEP 10 (2013) 162 [arXiv:1307.4087] [INSPIRE].ADSCrossRefGoogle Scholar
- [22]V. Bekkert, G. Benkart and V. Futorny, Weyl algebra modules, math/0202222.
- [23]R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [24]S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3 − D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [25]S. Dutta and R. Gopakumar, Free fermions and thermal AdS/CFT, JHEP 03 (2008) 011 [arXiv:0711.0133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [26]C. Candu and M.R. Gaberdiel, Duality in N = 2 minimal model holography, JHEP 02 (2013) 070 [arXiv:1207.6646] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [27]M.R. Gaberdiel and M. Kelm, The continuous orbifold of \( \mathcal{N}=2 \) minimal model holography, JHEP 08 (2014) 084 [arXiv:1406.2345] [INSPIRE].ADSCrossRefGoogle Scholar
- [28]S. Fredenhagen and C. Restuccia, The geometry of the limit of N = 2 minimal models, J. Phys. A 46 (2013) 045402 [arXiv:1208.6136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [29]M.R. Gaberdiel and M. Kelm, The symmetric orbifold of N = 2 minimal models, JHEP 07 (2016) 113, [arXiv:1604.03964 [INSPIRE].
- [30]J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [31]T. Procházka, \( \mathcal{W} \) -symmetry, topological vertex and affine Yangian, arXiv:1512.07178.
- [32]M. Niedermaier, Irrational free field resolutions for W(sl(n)) and extended Sugawara construction, Commun. Math. Phys. 148 (1992) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [33]P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.