Advertisement

Journal of High Energy Physics

, 2016:55 | Cite as

Black hole Skyrmion in a generalized Skyrme model

  • Sven Bjarke Gudnason
  • Muneto Nitta
  • Nobuyuki Sawado
Open Access
Regular Article - Theoretical Physics

Abstract

We study a Skyrme-like model with the Skyrme term and a sixth-order derivative term as higher-order terms, coupled to gravity and we construct Schwarzschild black hole Skyrme hair. We find, surprisingly, that the sixth-order derivative term alone cannot stabilize the black hole hair solutions; the Skyrme term with a large enough coefficient is a necessity.

Keywords

Black Holes Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Lückock and I. Moss, Black holes have skyrmion hair, Phys. Lett. B 176 (1986) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N.K. Glendenning, T. Kodama and F.R. Klinkhamer, Skyrme topological soliton coupled to gravity, Phys. Rev. D 38 (1988) 3226 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Droz, M. Heusler and N. Straumann, New black hole solutions with hair, Phys. Lett. B 268 (1991) 371 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Heusler, S. Droz and N. Straumann, Stability analysis of selfgravitating skyrmions, Phys. Lett. B 271 (1991) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Heusler, S. Droz and N. Straumann, Linear stability of Einstein Skyrme black holes, Phys. Lett. B 285 (1992) 21 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. Bizon and T. Chmaj, Gravitating skyrmions, Phys. Lett. B 297 (1992) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.S. Volkov and D.V. Gal’tsov, Gravitating non-Abelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Shiiki and N. Sawado, Black holes with Skyrme hair, gr-qc/0501025 [INSPIRE].
  9. [9]
    T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Shiiki and N. Sawado, Black hole skyrmions with negative cosmological constant, Phys. Rev. D 71 (2005) 104031 [gr-qc/0502107] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    N. Shiiki and N. Sawado, Regular and black hole solutions in the Einstein-Skyrme theory with negative cosmological constant, Class. Quant. Grav. 22 (2005) 3561 [gr-qc/0503123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Brihaye and T. Delsate, Skyrmion and Skyrme-black holes in de Sitter spacetime, Mod. Phys. Lett. A 21 (2006) 2043 [hep-th/0512339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Zajac, Late-time evolution of the gravitating skyrmion, Acta Phys. Polon. B 40 (2009) 1617 [arXiv:0906.4322] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Zajac, Late-time tails of self-gravitating skyrmions, Acta Phys. Polon. B 42 (2011) 249 [arXiv:1001.4818] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    Ya. Shnir, Gravitating sphalerons in the Skyrme model, Phys. Rev. D 92 (2015) 085039 [arXiv:1508.06507] [INSPIRE].
  17. [17]
    N. Shiiki, N. Sawado and S. Oryu, Collective quantisation of a gravitating skyrmion, Phys. Rev. D 70 (2004) 114023 [hep-ph/0409054] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N. Sawado and N. Shiiki, Axially symmetric black hole skyrmions, eConf C 0306234 (2003) 1442 [gr-qc/0307115] [INSPIRE].
  19. [19]
    N. Sawado, N. Shiiki, K.-I. Maeda and T. Torii, Regular and black hole skyrmions with axisymmetry, Gen. Rel. Grav. 36 (2004) 1361 [gr-qc/0401020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Sato, N. Sawado and N. Shiiki, Collective quantization of axially symmetric gravitating B = 2 skyrmion, Phys. Rev. D 75 (2007) 014011 [hep-th/0609196] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Dvali and A. Gußmann, Skyrmion black hole hair: conservation of baryon number by black holes and observable manifestations, arXiv:1605.00543 [INSPIRE].
  22. [22]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large-N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS skyrmions as neutron stars, Phys. Lett. B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, Neutron stars in the Bogomol’nyi-Prasad-Sommerfield Skyrme model: mean-field limit versus full field theory, Phys. Rev. C 92 (2015) 025802 [arXiv:1503.03095] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.B. Gudnason, M. Nitta and N. Sawado, Gravitating BPS skyrmions, JHEP 12 (2015) 013 [arXiv:1510.08735] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964) 1252 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A.E. Kudryavtsev, B.M.A.G. Piette and W.J. Zakrzewski, Skyrmions and domain walls in (2 + 1)-dimensions, Nonlinearity 11 (1998) 783 [hep-th/9709187] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Weidig, The baby Skyrme models and their multiskyrmions, Nonlinearity 12 (1999) 1489 [hep-th/9811238] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B.M.A.G. Piette and W.J. Zakrzewski, Skyrmions and domain walls, in Solitons, Kingston Canada (1997), pg. 187 [hep-th/9710011] [INSPIRE].
  31. [31]
    A.E. Kudryavtsev, B.M.A.G. Piette and W.J. Zakrzewski, On the interactions of skyrmions with domain walls, Phys. Rev. D 61 (2000) 025016 [hep-th/9907197] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Nitta, Correspondence between skyrmions in 2 + 1 and 3 + 1 dimensions, Phys. Rev. D 87 (2013) 025013 [arXiv:1210.2233] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Nitta, Matryoshka skyrmions, Nucl. Phys. B 872 (2013) 62 [arXiv:1211.4916] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S.B. Gudnason and M. Nitta, Baryonic sphere: a spherical domain wall carrying baryon number, Phys. Rev. D 89 (2014) 025012 [arXiv:1311.4454] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S.B. Gudnason and M. Nitta, Domain wall skyrmions, Phys. Rev. D 89 (2014) 085022 [arXiv:1403.1245] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.B. Gudnason and M. Nitta, Incarnations of skyrmions, Phys. Rev. D 90 (2014) 085007 [arXiv:1407.7210] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.B. Gudnason and M. Nitta, Baryonic torii: toroidal baryons in a generalized Skyrme model, Phys. Rev. D 91 (2015) 045027 [arXiv:1410.8407] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    S.B. Gudnason and M. Nitta, D-brane solitons in various dimensions, Phys. Rev. D 91 (2015) 045018 [arXiv:1412.6995] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S.B. Gudnason and M. Nitta, Fractional skyrmions and their molecules, Phys. Rev. D 91 (2015) 085040 [arXiv:1502.06596] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    C. Adam, C. Naya, J. Sanchez-Guillen, J.M. Speight and A. Wereszczynski, Thermodynamics of the BPS Skyrme model, Phys. Rev. D 90 (2014) 045003 [arXiv:1405.2927] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Adam, O. Kichakova, Ya. Shnir and A. Wereszczynski, Hairy black holes in the general Skyrme model, Phys. Rev. D 94 (2016) 024060 [arXiv:1605.07625] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sven Bjarke Gudnason
    • 1
  • Muneto Nitta
    • 2
  • Nobuyuki Sawado
    • 3
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan
  3. 3.Department of PhysicsTokyo University of ScienceNodaJapan

Personalised recommendations