Journal of High Energy Physics

, 2016:42 | Cite as

How to save the WIMP: global analysis of a dark matter model with two s-channel mediators

  • Michael Duerr
  • Felix KahlhoeferEmail author
  • Kai Schmidt-Hoberg
  • Thomas Schwetz
  • Stefan Vogl
Open Access
Regular Article - Theoretical Physics


A reliable comparison of different dark matter (DM) searches requires models that satisfy certain consistency requirements like gauge invariance and perturbative unitarity. As a well-motivated example, we study two-mediator DM (2MDM). The model is based on a spontaneously broken U(1)′ gauge symmetry and contains a Majorana DM particle as well as two s-channel mediators, one vector (the Z′) and one scalar (the dark Higgs). We perform a global scan over the parameters of the model assuming that the DM relic density is obtained by thermal freeze-out in the early Universe and imposing a large set of constraints: direct and indirect DM searches, monojet, dijet and dilepton searches at colliders, Higgs observables, electroweak precision tests and perturbative unitarity. We conclude that thermal DM is only allowed either close to an s-channel resonance or if at least one mediator is lighter than the DM particle. In these cases a thermal DM abundance can be obtained although DM couplings to the Standard Model are tiny. Interestingly, we find that vector-mediated DM-nucleon scattering leads to relevant constraints despite the velocity-suppressed cross section, and that indirect detection can be important if DM annihilations into both mediators are kinematically allowed.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Zand dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Garny, A. Ibarra, S. Rydbeck and S. Vogl, Majorana dark matter with a coloured mediator: collider vs direct and indirect searches, JHEP 06 (2014) 169 [arXiv:1403.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Zmodels from LHC dijet searches, arXiv:1605.07940 [INSPIRE].
  6. [6]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z′, arXiv:1605.06513 [INSPIRE].
  7. [7]
    N.F. Bell, Y. Cai and R.K. Leane, Dark forces in the sky: signals from Zand the dark Higgs, JCAP 08 (2016) 001 [arXiv:1605.09382] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Zportal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Ghorbani and H. Ghorbani, Two-portal dark matter, Phys. Rev. D 91 (2015) 123541 [arXiv:1504.03610] [INSPIRE].ADSGoogle Scholar
  11. [11]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  15. [15]
    D. Abercrombie et al., Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].
  16. [16]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Englert, M. McCullough and M. Spannowsky, S-channel dark matter simplified models and unitarity, arXiv:1604.07975 [INSPIRE].
  18. [18]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  19. [19]
    A. Alves and K. Sinha, Searches for dark matter at the LHC: a multivariate analysis in the mono-Z channel, Phys. Rev. D 92 (2015) 115013 [arXiv:1507.08294] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Jacques and K. Nordström, Mapping monojet constraints onto simplified dark matter models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Closing up on dark sectors at colliders: from 14 to 100 TeV, Phys. Rev. D 93 (2016) 054030 [arXiv:1509.02904] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N.F. Bell, Y. Cai and R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    U. Haisch, F. Kahlhoefer and T.M.P. Tait, On mono-W signatures in Spin-1 simplified models, Phys. Lett. B 760 (2016) 207 [arXiv:1603.01267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches, JHEP 05 (2016) 112 [arXiv:1603.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Fairbairn and J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D 90 (2014) 115019 [arXiv:1406.3288] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Choudhury, K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, Less-simplified models of dark matter for direct detection and the LHC, JHEP 04 (2016) 182 [arXiv:1509.05771] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Blennow, J. Herrero-Garcia, T. Schwetz and S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC and thermal freeze-out, JCAP 08 (2015) 039 [arXiv:1505.05710] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Heisig, M. Krämer, M. Pellen and C. Wiebusch, Constraints on Majorana dark matter from the LHC and IceCube, Phys. Rev. D 93 (2016) 055029 [arXiv:1509.07867] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Zportal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  31. [31]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, Making the most of the relic density for dark matter searches at the LHC 14 TeV run, JCAP 03 (2015) 022 [arXiv:1410.7409] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Duerr and P. Fileviez Perez, Baryonic dark matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Duerr and P. Fileviez Perez, Theory for baryon number and dark matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Ohmer and H.H. Patel, Leptobaryons as Majorana dark matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma lines from Majorana dark matter, Phys. Rev. D 93 (2016) 023509 [arXiv:1508.01425] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Martin, J. Shelton and J. Unwin, Fitting the galactic center gamma-ray excess with cascade annihilations, Phys. Rev. D 90 (2014) 103513 [arXiv:1405.0272] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Autran, K. Bauer, T. Lin and D. Whiteson, Searches for dark matter in events with a resonance and missing transverse energy, Phys. Rev. D 92 (2015) 035007 [arXiv:1504.01386] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Buschmann, J. Kopp, J. Liu and P.A.N. Machado, Lepton jets from radiating dark matter, JHEP 07 (2015) 045 [arXiv:1505.07459] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Zjet, JHEP 06 (2015) 205 [arXiv:1504.01395] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Gupta, R. Primulando and P. Saraswat, A new probe of dark sector dynamics at the LHC, JHEP 09 (2015) 079 [arXiv:1504.01385] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    M. Buschmann et al., Hunting for dark matter coannihilation by mixing dijet resonances and missing transverse energy, arXiv:1605.08056 [INSPIRE].
  47. [47]
    A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Ruling out minimal anomaly free U(1) extensions of the Standard Model, arXiv:1605.04855 [INSPIRE].
  48. [48]
    J.-Y. Liu, Y. Tang and Y.-L. Wu, Searching for Zgauge boson in an anomaly-free U(1)′ gauge family model, J. Phys. G 39 (2012) 055003 [arXiv:1108.5012] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  51. [51]
    S. El Hedri, W. Shepherd and D.G.E. Walker, Perturbative unitarity constraints on gauge portals, arXiv:1412.5660 [INSPIRE].
  52. [52]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  53. [53]
    S.K. Kang and J. Park, Unitarity constraints in the Standard Model with a singlet scalar field, JHEP 04 (2015) 009 [arXiv:1306.6713] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 08 (2016) 111 [arXiv:1605.04917] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The effective field theory of dark matter direct detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].ADSGoogle Scholar
  57. [57]
    LUX collaboration, D.S. Akerib et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  58. [58]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  59. [59]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  61. [61]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
  62. [62]
    CMS collaboration, Search for dark matter production in association with jets, or hadronically decaying W or Z boson at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-013, CERN, Geneva Switzerland (2016).
  63. [63]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  64. [64]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  67. [67]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  68. [68]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  69. [69]
    CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].
  70. [70]
    ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].
  71. [71]
    CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s}=8 \) TeV with the novel CMS technique of data scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].
  72. [72]
    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    K.S. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1)’s and the R b -R c crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].ADSGoogle Scholar
  75. [75]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  76. [76]
    CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [INSPIRE].
  77. [77]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  78. [78]
    A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044, CERN, Geneva Switzerland (2015).
  81. [81]
    CMS collaboration, CMS high mass WW and ZZ Higgs search with the complete LHC Run 1 statistics, in Proceedings, 50th Rencontres de Moriond Electroweak interactions and unified theories, La Thuile Italy (2015), pg. 47 [arXiv:1505.03831] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  83. [83]
    A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  85. [85]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  87. [87]
    K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  88. [88]
    C. Gordon and O. Macias, Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations, Phys. Rev. D 88 (2013) 083521 [Erratum ibid. D 89 (2014) 049901] [arXiv:1306.5725] [INSPIRE].
  89. [89]
    T. Daylan et al., The characterization of the gamma-ray signal from the central milky way: a case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    CTA Consortium collaboration, J. Carr et al., Prospects for indirect dark matter searches with the Cherenkov Telescope Array (CTA), PoS(ICRC2015)1203 [arXiv:1508.06128] [INSPIRE].
  91. [91]
    S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer and W. Xue, Evidence for unresolved γ-ray point sources in the inner galaxy, Phys. Rev. Lett. 116 (2016) 051103 [arXiv:1506.05124] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    R. Bartels, S. Krishnamurthy and C. Weniger, Strong support for the millisecond pulsar origin of the galactic center GeV excess, Phys. Rev. Lett. 116 (2016) 051102 [arXiv:1506.05104] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP dark matter in a well-tempered regime: a case study on singlet-doublets fermionic WIMP, arXiv:1603.07387 [INSPIRE].
  95. [95]
    M.J. Baker et al., The coannihilation codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Michael Duerr
    • 1
  • Felix Kahlhoefer
    • 1
    Email author
  • Kai Schmidt-Hoberg
    • 1
  • Thomas Schwetz
    • 2
  • Stefan Vogl
    • 2
  1. 1.DESYHamburgGermany
  2. 2.Institut für KernphysikKarlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations