# How to save the WIMP: global analysis of a dark matter model with two *s*-channel mediators

- 187 Downloads
- 37 Citations

## Abstract

A reliable comparison of different dark matter (DM) searches requires models that satisfy certain consistency requirements like gauge invariance and perturbative unitarity. As a well-motivated example, we study two-mediator DM (2MDM). The model is based on a spontaneously broken U(1)′ gauge symmetry and contains a Majorana DM particle as well as two *s*-channel mediators, one vector (the *Z*′) and one scalar (the dark Higgs). We perform a global scan over the parameters of the model assuming that the DM relic density is obtained by thermal freeze-out in the early Universe and imposing a large set of constraints: direct and indirect DM searches, monojet, dijet and dilepton searches at colliders, Higgs observables, electroweak precision tests and perturbative unitarity. We conclude that thermal DM is only allowed either close to an *s*-channel resonance or if at least one mediator is lighter than the DM particle. In these cases a thermal DM abundance can be obtained although DM couplings to the Standard Model are tiny. Interestingly, we find that vector-mediated DM-nucleon scattering leads to relevant constraints despite the velocity-suppressed cross section, and that indirect detection can be important if DM annihilations into both mediators are kinematically allowed.

## Keywords

Beyond Standard Model Cosmology of Theories beyond the SM## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg,
*LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators*,*JHEP***07**(2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar - [2]G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar,
*Invisible Z*′*and dark matter: LHC vs LUX constraints*,*JHEP***03**(2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar - [3]M. Garny, A. Ibarra, S. Rydbeck and S. Vogl,
*Majorana dark matter with a coloured mediator: collider vs direct and indirect searches*,*JHEP***06**(2014) 169 [arXiv:1403.4634] [INSPIRE].ADSCrossRefGoogle Scholar - [4]M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg,
*Constraining dark sectors with monojets and dijets*,*JHEP***07**(2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar - [5]M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney,
*Constraints on Z*′*models from LHC dijet searches*, arXiv:1605.07940 [INSPIRE]. - [6]T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto,
*Complementarity of DM searches in a consistent simplified model: the case of Z*′, arXiv:1605.06513 [INSPIRE]. - [7]N.F. Bell, Y. Cai and R.K. Leane,
*Dark forces in the sky: signals from Z*′*and the dark Higgs*,*JCAP***08**(2016) 001 [arXiv:1605.09382] [INSPIRE].ADSCrossRefGoogle Scholar - [8]A. Alves, S. Profumo and F.S. Queiroz,
*The dark Z*′*portal: direct, indirect and collider searches*,*JHEP***04**(2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar - [9]A. Alves, A. Berlin, S. Profumo and F.S. Queiroz,
*Dirac-fermionic dark matter in*U(1)_{X}*models*,*JHEP***10**(2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar - [10]K. Ghorbani and H. Ghorbani,
*Two-portal dark matter*,*Phys. Rev.***D 91**(2015) 123541 [arXiv:1504.03610] [INSPIRE].ADSGoogle Scholar - [11]O. Buchmueller, M.J. Dolan and C. McCabe,
*Beyond effective field theory for dark matter searches at the LHC*,*JHEP***01**(2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar - [12]P. Harris, V.V. Khoze, M. Spannowsky and C. Williams,
*Constraining dark sectors at colliders: beyond the effective theory approach*,*Phys. Rev.***D 91**(2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar - [13]M.R. Buckley, D. Feld and D. Goncalves,
*Scalar simplified models for dark matter*,*Phys. Rev.***D 91**(2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar - [14]J. Abdallah et al.,
*Simplified models for dark matter searches at the LHC*,*Phys. Dark Univ.***9-10**(2015) 8 [arXiv:1506.03116] [INSPIRE]. - [15]D. Abercrombie et al.,
*Dark matter benchmark models for early LHC Run-*2*searches: report of the ATLAS/CMS dark matter forum*, arXiv:1507.00966 [INSPIRE]. - [16]F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl,
*Implications of unitarity and gauge invariance for simplified dark matter models*,*JHEP***02**(2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar - [17]C. Englert, M. McCullough and M. Spannowsky,
*S-channel dark matter simplified models and unitarity*, arXiv:1604.07975 [INSPIRE]. - [18]G. Busoni et al.,
*Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter*, arXiv:1603.04156 [INSPIRE]. - [19]A. Alves and K. Sinha,
*Searches for dark matter at the LHC: a multivariate analysis in the mono-Z channel*,*Phys. Rev.***D 92**(2015) 115013 [arXiv:1507.08294] [INSPIRE].ADSGoogle Scholar - [20]T. Jacques and K. Nordström,
*Mapping monojet constraints onto simplified dark matter models*,*JHEP***06**(2015) 142 [arXiv:1502.05721] [INSPIRE].ADSCrossRefGoogle Scholar - [21]P. Harris, V.V. Khoze, M. Spannowsky and C. Williams,
*Closing up on dark sectors at colliders: from*14*to*100*TeV*,*Phys. Rev.***D 93**(2016) 054030 [arXiv:1509.02904] [INSPIRE].ADSGoogle Scholar - [22]N.F. Bell, Y. Cai and R.K. Leane,
*Mono-W dark matter signals at the LHC: simplified model analysis*,*JCAP***01**(2016) 051 [arXiv:1512.00476] [INSPIRE].ADSCrossRefGoogle Scholar - [23]U. Haisch, F. Kahlhoefer and T.M.P. Tait,
*On mono-W signatures in Spin-*1*simplified models*,*Phys. Lett.***B 760**(2016) 207 [arXiv:1603.01267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [24]A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques,
*Collide and conquer: constraints on simplified dark matter models using mono-X collider searches*,*JHEP***05**(2016) 112 [arXiv:1603.01366] [INSPIRE].ADSCrossRefGoogle Scholar - [25]O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe,
*Characterising dark matter searches at colliders and direct detection experiments: vector mediators*,*JHEP***01**(2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar - [26]M. Fairbairn and J. Heal,
*Complementarity of dark matter searches at resonance*,*Phys. Rev.***D 90**(2014) 115019 [arXiv:1406.3288] [INSPIRE].ADSGoogle Scholar - [27]A. Choudhury, K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams,
*Less-simplified models of dark matter for direct detection and the LHC*,*JHEP***04**(2016) 182 [arXiv:1509.05771] [INSPIRE].ADSCrossRefGoogle Scholar - [28]M. Blennow, J. Herrero-Garcia, T. Schwetz and S. Vogl,
*Halo-independent tests of dark matter direct detection signals: local DM density, LHC and thermal freeze-out*,*JCAP***08**(2015) 039 [arXiv:1505.05710] [INSPIRE].ADSCrossRefGoogle Scholar - [29]J. Heisig, M. Krämer, M. Pellen and C. Wiebusch,
*Constraints on Majorana dark matter from the LHC and IceCube*,*Phys. Rev.***D 93**(2016) 055029 [arXiv:1509.07867] [INSPIRE].ADSGoogle Scholar - [30]A. Alves, A. Berlin, S. Profumo and F.S. Queiroz,
*Dark matter complementarity and the Z*′*portal*,*Phys. Rev.***D 92**(2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar - [31]G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto,
*Making the most of the relic density for dark matter searches at the LHC*14*TeV run*,*JCAP***03**(2015) 022 [arXiv:1410.7409] [INSPIRE].ADSCrossRefGoogle Scholar - [32]
- [33]M. Duerr, P. Fileviez Perez and M.B. Wise,
*Gauge theory for baryon and lepton numbers with leptoquarks*,*Phys. Rev. Lett.***110**(2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar - [34]P. Fileviez Perez, S. Ohmer and H.H. Patel,
*Minimal theory for lepto-baryons*,*Phys. Lett.***B 735**(2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar - [35]M. Duerr and P. Fileviez Perez,
*Baryonic dark matter*,*Phys. Lett.***B 732**(2014) 101 [arXiv:1309.3970] [INSPIRE].ADSCrossRefGoogle Scholar - [36]M. Duerr and P. Fileviez Perez,
*Theory for baryon number and dark matter at the LHC*,*Phys. Rev.***D 91**(2015) 095001 [arXiv:1409.8165] [INSPIRE].ADSGoogle Scholar - [37]S. Ohmer and H.H. Patel,
*Leptobaryons as Majorana dark matter*,*Phys. Rev.***D 92**(2015) 055020 [arXiv:1506.00954] [INSPIRE].ADSGoogle Scholar - [38]M. Duerr, P. Fileviez Perez and J. Smirnov,
*Gamma lines from Majorana dark matter*,*Phys. Rev.***D 93**(2016) 023509 [arXiv:1508.01425] [INSPIRE].ADSGoogle Scholar - [39]M. Pospelov, A. Ritz and M.B. Voloshin,
*Secluded WIMP dark matter*,*Phys. Lett.***B 662**(2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar - [40]L. Lopez-Honorez, T. Schwetz and J. Zupan,
*Higgs portal, fermionic dark matter and a Standard Model like Higgs at*125*GeV*,*Phys. Lett.***B 716**(2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar - [41]A. Martin, J. Shelton and J. Unwin,
*Fitting the galactic center gamma-ray excess with cascade annihilations*,*Phys. Rev.***D 90**(2014) 103513 [arXiv:1405.0272] [INSPIRE].ADSGoogle Scholar - [42]M. Autran, K. Bauer, T. Lin and D. Whiteson,
*Searches for dark matter in events with a resonance and missing transverse energy*,*Phys. Rev.***D 92**(2015) 035007 [arXiv:1504.01386] [INSPIRE].ADSGoogle Scholar - [43]M. Buschmann, J. Kopp, J. Liu and P.A.N. Machado,
*Lepton jets from radiating dark matter*,*JHEP***07**(2015) 045 [arXiv:1505.07459] [INSPIRE].ADSCrossRefGoogle Scholar - [44]Y. Bai, J. Bourbeau and T. Lin,
*Dark matter searches with a mono-Z*′*jet*,*JHEP***06**(2015) 205 [arXiv:1504.01395] [INSPIRE].ADSCrossRefGoogle Scholar - [45]A. Gupta, R. Primulando and P. Saraswat,
*A new probe of dark sector dynamics at the LHC*,*JHEP***09**(2015) 079 [arXiv:1504.01385] [INSPIRE].CrossRefGoogle Scholar - [46]M. Buschmann et al.,
*Hunting for dark matter coannihilation by mixing dijet resonances and missing transverse energy*, arXiv:1605.08056 [INSPIRE]. - [47]A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal,
*Ruling out minimal anomaly free*U(1)*extensions of the Standard Model*, arXiv:1605.04855 [INSPIRE]. - [48]J.-Y. Liu, Y. Tang and Y.-L. Wu,
*Searching for Z*′*gauge boson in an anomaly-free*U(1)′*gauge family model*,*J. Phys.***G 39**(2012) 055003 [arXiv:1108.5012] [INSPIRE].ADSCrossRefGoogle Scholar - [49]G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov,
*MicrOMEGAs*4*.*1*: two dark matter candidates*,*Comput. Phys. Commun.***192**(2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar - [50]Planck collaboration, P.A.R. Ade et al.,
*Planck*2015*results. XIII. Cosmological parameters*, arXiv:1502.01589 [INSPIRE]. - [51]S. El Hedri, W. Shepherd and D.G.E. Walker,
*Perturbative unitarity constraints on gauge portals*, arXiv:1412.5660 [INSPIRE]. - [52]B.W. Lee, C. Quigg and H.B. Thacker,
*Weak interactions at very high-energies: the role of the Higgs boson mass*,*Phys. Rev.***D 16**(1977) 1519 [INSPIRE].ADSGoogle Scholar - [53]S.K. Kang and J. Park,
*Unitarity constraints in the Standard Model with a singlet scalar field*,*JHEP***04**(2015) 009 [arXiv:1306.6713] [INSPIRE].CrossRefGoogle Scholar - [54]F. D’Eramo, B.J. Kavanagh and P. Panci,
*You can hide but you have to run: direct detection with vector mediators*,*JHEP***08**(2016) 111 [arXiv:1605.04917] [INSPIRE].CrossRefGoogle Scholar - [55]A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu,
*The effective field theory of dark matter direct detection*,*JCAP***02**(2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar - [56]N. Anand, A.L. Fitzpatrick and W.C. Haxton,
*Weakly interacting massive particle-nucleus elastic scattering response*,*Phys. Rev.***C 89**(2014) 065501 [arXiv:1308.6288] [INSPIRE].ADSGoogle Scholar - [57]LUX collaboration, D.S. Akerib et al.,
*Improved limits on scattering of weakly interacting massive particles from reanalysis of*2013*LUX data*,*Phys. Rev. Lett.***116**(2016) 161301 [arXiv:1512.03506] [INSPIRE]. - [58]LUX collaboration, D.S. Akerib et al.,
*First results from the LUX dark matter experiment at the Sanford Underground Research Facility*,*Phys. Rev. Lett.***112**(2014) 091303 [arXiv:1310.8214] [INSPIRE]. - [59]M. Cirelli, E. Del Nobile and P. Panci,
*Tools for model-independent bounds in direct dark matter searches*,*JCAP***10**(2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar - [60]CMS collaboration,
*Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at*\( \sqrt{s}=8 \)*TeV*,*Eur. Phys. J.***C 75**(2015) 235 [arXiv:1408.3583] [INSPIRE]. - [61]ATLAS collaboration,
*Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at*\( \sqrt{s}=8 \)*TeV with the ATLAS detector*,*Eur. Phys. J.***C 75**(2015) 299 [*Erratum ibid.***C 75**(2015) 408] [arXiv:1502.01518] [INSPIRE]. - [62]CMS collaboration,
*Search for dark matter production in association with jets, or hadronically decaying W or Z boson at*\( \sqrt{s}=13 \)*TeV*, CMS-PAS-EXO-16-013, CERN, Geneva Switzerland (2016). - [63]ATLAS collaboration,
*Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at*\( \sqrt{s}=13 \)*TeV using the ATLAS detector*,*Phys. Rev.***D 94**(2016) 032005 [arXiv:1604.07773] [INSPIRE]. - [64]A. Belyaev, N.D. Christensen and A. Pukhov,
*CalcHEP*3*.*4*for collider physics within and beyond the Standard Model*,*Comput. Phys. Commun.***184**(2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [65]T. Sjöstrand, S. Mrenna and P.Z. Skands,
*A brief introduction to PYTHIA*8*.*1,*Comput. Phys. Commun.***178**(2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [66]DELPHES 3 collaboration, J. de Favereau et al.,
*DELPHES*3*, a modular framework for fast simulation of a generic collider experiment*,*JHEP***02**(2014) 057 [arXiv:1307.6346] [INSPIRE]. - [67]CMS collaboration,
*Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at*\( \sqrt{s}=8 \)*TeV*,*Phys. Rev.***D 91**(2015) 052009 [arXiv:1501.04198] [INSPIRE]. - [68]ATLAS collaboration,
*Search for new phenomena in the dijet mass distribution using pp collision data at*\( \sqrt{s}=8 \)*TeV with the ATLAS detector*,*Phys. Rev.***D 91**(2015) 052007 [arXiv:1407.1376] [INSPIRE]. - [69]CMS collaboration,
*Search for narrow resonances decaying to dijets in proton-proton collisions at*\( \sqrt{s}=13 \)*TeV*,*Phys. Rev. Lett.***116**(2016) 071801 [arXiv:1512.01224] [INSPIRE]. - [70]ATLAS collaboration,
*Search for new phenomena in dijet mass and angular distributions from pp collisions at*\( \sqrt{s}=13 \)*TeV with the ATLAS detector*,*Phys. Lett.***B 754**(2016) 302 [arXiv:1512.01530] [INSPIRE]. - [71]CMS collaboration,
*Search for narrow resonances in dijet final states at*\( \sqrt{s}=8 \)*TeV with the novel CMS technique of data scouting*,*Phys. Rev. Lett.***117**(2016) 031802 [arXiv:1604.08907] [INSPIRE]. - [72]B. Holdom,
*Two*U(1)*’s and ϵ charge shifts*,*Phys. Lett.***B 166**(1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar - [73]K.S. Babu, C.F. Kolda and J. March-Russell,
*Leptophobic*U(1)*’s and the R*_{b}*-R*_{c}*crisis*,*Phys. Rev.***D 54**(1996) 4635 [hep-ph/9603212] [INSPIRE].ADSGoogle Scholar - [74]C.D. Carone and H. Murayama,
*Realistic models with a light*U(1)*gauge boson coupled to baryon number*,*Phys. Rev.***D 52**(1995) 484 [hep-ph/9501220] [INSPIRE].ADSGoogle Scholar - [75]ATLAS collaboration,
*Search for high-mass dilepton resonances in pp collisions at*\( \sqrt{s}=8 \)*TeV with the ATLAS detector*,*Phys. Rev.***D 90**(2014) 052005 [arXiv:1405.4123] [INSPIRE]. - [76]CDF collaboration, T. Aaltonen et al.,
*A search for high-mass resonances decaying to dimuons at CDF*,*Phys. Rev. Lett.***102**(2009) 091805 [arXiv:0811.0053] [INSPIRE]. - [77]Particle Data Group collaboration, K.A. Olive et al.,
*Review of particle physics*,*Chin. Phys.***C 38**(2014) 090001 [INSPIRE]. - [78]A. Hook, E. Izaguirre and J.G. Wacker,
*Model independent bounds on kinetic mixing*,*Adv. High Energy Phys.***2011**(2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [79]K. Griest and M. Kamionkowski,
*Unitarity limits on the mass and radius of dark matter particles*,*Phys. Rev. Lett.***64**(1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar - [80]ATLAS and CMS collaborations,
*Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at*\( \sqrt{s}=7 \)*and*8*TeV*, ATLAS-CONF-2015-044, CERN, Geneva Switzerland (2015). - [81]CMS collaboration,
*CMS high mass WW and ZZ Higgs search with the complete LHC Run*1*statistics*, in*Proceedings,*50^{th}*Rencontres de Moriond Electroweak interactions and unified theories*, La Thuile Italy (2015), pg. 47 [arXiv:1505.03831] [INSPIRE]. - [82]ATLAS collaboration,
*Search for an additional, heavy Higgs boson in the H*→*ZZ decay channel at*\( \sqrt{s}=8 \)*TeV in pp collision data with the ATLAS detector*,*Eur. Phys. J.***C 76**(2016) 45 [arXiv:1507.05930] [INSPIRE]. - [83]A. Falkowski, C. Gross and O. Lebedev,
*A second Higgs from the Higgs portal*,*JHEP***05**(2015) 057 [arXiv:1502.01361] [INSPIRE].ADSCrossRefGoogle Scholar - [84]Fermi-LAT collaboration, M. Ackermann et al.,
*Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data*,*Phys. Rev. Lett.***115**(2015) 231301 [arXiv:1503.02641] [INSPIRE]. - [85]D. Hooper and L. Goodenough,
*Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope*,*Phys. Lett.***B 697**(2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar - [86]D. Hooper and T. Linden,
*On the origin of the gamma rays from the galactic center*,*Phys. Rev.***D 84**(2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar - [87]K.N. Abazajian and M. Kaplinghat,
*Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission*,*Phys. Rev.***D 86**(2012) 083511 [*Erratum ibid.***D 87**(2013) 129902] [arXiv:1207.6047] [INSPIRE]. - [88]C. Gordon and O. Macias,
*Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations*,*Phys. Rev.***D 88**(2013) 083521 [*Erratum ibid.***D 89**(2014) 049901] [arXiv:1306.5725] [INSPIRE]. - [89]T. Daylan et al.,
*The characterization of the gamma-ray signal from the central milky way: a case for annihilating dark matter*,*Phys. Dark Univ.***12**(2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar - [90]CTA Consortium collaboration, J. Carr et al.,
*Prospects for indirect dark matter searches with the Cherenkov Telescope Array (CTA)*, PoS(ICRC2015)1203 [arXiv:1508.06128] [INSPIRE]. - [91]S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer and W. Xue,
*Evidence for unresolved γ-ray point sources in the inner galaxy*,*Phys. Rev. Lett.***116**(2016) 051103 [arXiv:1506.05124] [INSPIRE].ADSCrossRefGoogle Scholar - [92]R. Bartels, S. Krishnamurthy and C. Weniger,
*Strong support for the millisecond pulsar origin of the galactic center GeV excess*,*Phys. Rev. Lett.***116**(2016) 051102 [arXiv:1506.05104] [INSPIRE].ADSCrossRefGoogle Scholar - [93]N. Arkani-Hamed, A. Delgado and G.F. Giudice,
*The well-tempered neutralino*,*Nucl. Phys.***B 741**(2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar - [94]S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai,
*WIMP dark matter in a well-tempered regime: a case study on singlet-doublets fermionic WIMP*, arXiv:1603.07387 [INSPIRE]. - [95]M.J. Baker et al.,
*The coannihilation codex*,*JHEP***12**(2015) 120 [arXiv:1510.03434] [INSPIRE].ADSCrossRefGoogle Scholar - [96]M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg,
*Direct detection of dark matter in models with a light Z*′,*JHEP***09**(2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.