Journal of High Energy Physics

, 2016:26 | Cite as

α′ Inflation: moduli stabilisation and observable tensors from higher derivatives

  • Michele CicoliEmail author
  • David Ciupke
  • Senarath de Alwis
  • Francesco Muia
Open Access
Regular Article - Theoretical Physics


The leading order dynamics of the type IIB Large Volume Scenario is characterised by the interplay between α′ and non-perturbative effects which fix the overall volume and all local blow-up modes leaving (in general) several flat directions. In this paper we show that, in an arbitrary Calabi-Yau with at least one blow-up mode resolving a point-like singularity, any remaining flat directions can be lifted at subleading order by the inclusions of higher derivative α′ corrections. We then focus on simple fibred cases with one remaining flat direction which can behave as an inflaton if its potential is generated by both higher derivative α′ and winding loop corrections. Natural values of the underlying parameters give a spectral index in agreement with observational data and a tensor-to-scalar ratio of order r = 0.01 which could be observed by forthcoming CMB experiments. Dangerous corrections from higher dimensional operators are suppressed due to the presence of an approximate non-compact shift symmetry.


Cosmology of Theories beyond the SM Superstring Vacua Flux compactifications 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S.P. de Alwis, Classical and Quantum SUSY Breaking Effects in IIB Local Models, JHEP 03 (2010) 078 [arXiv:0912.2950] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Baer, S. de Alwis, K. Givens, S. Rajagopalan and H. Summy, Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC, JHEP 05 (2010) 069 [arXiv:1002.4633] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    S. de Alwis and K. Givens, Dark Matter density and the Higgs mass in LVS String Phenomenology, Phys. Lett. B 719 (2013) 143 [arXiv:1203.5796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Cicoli, A. Maharana, F. Quevedo and C.P. Burgess, De Sitter String Vacua from Dilaton-dependent Non-perturbative Effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    M. Graña, Flux compactifications in string theory: A comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-Fibred Calabi-Yau Manifolds with del Pezzo Divisors for String Compactifications, JHEP 02 (2012) 002 [arXiv:1107.0383] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Gray, Y.-H. He, V. Jejjala, B. Jurke, B.D. Nelson and J. Simon, Calabi-Yau Manifolds with Large Volume Vacua, Phys. Rev. D 86 (2012) 101901 [arXiv:1207.5801] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation, JHEP 07 (2013) 150 [arXiv:1304.0022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Cicoli, C.P. Burgess and F. Quevedo, Anisotropic Modulus Stabilisation: Strings at LHC Scales with Micron-sized Extra Dimensions, JHEP 10 (2011) 119 [arXiv:1105.2107] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    C.P. Burgess, M. Cicoli, F. Quevedo and M. Williams, Inflating with Large Effective Fields, JCAP 11 (2014) 045 [arXiv:1404.6236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, Robust Inflation from Fibrous Strings, JCAP 05 (2016) 032 [arXiv:1603.06789] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Ciupke, Scalar Potential from Higher Derivative \( \mathcal{N} \) = 1 Superspace, arXiv:1605.00651 [INSPIRE].
  31. [31]
    M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A Note on the Magnitude of the Flux Superpotential, JHEP 01 (2014) 027 [arXiv:1310.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.P. de Alwis, Constraints on Dbar Uplifts, arXiv:1605.06456 [INSPIRE].
  33. [33]
    M. Cicoli, F. Quevedo and R. Valandro, de Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].
  34. [34]
    B.J. Broy, D. Ciupke, F.G. Pedro and A. Westphal, Starobinsky-Type Inflation from α -Corrections, JCAP 01 (2016) 001 [arXiv:1509.00024] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cicoli, F. Muia and F.G. Pedro, Microscopic Origin of Volume Modulus Inflation, JCAP 12 (2015) 040 [arXiv:1509.07748] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Creminelli, D.L. López Nacir, M. Simonović, G. Trevisan and M. Zaldarriaga, Detecting Primordial B-Modes after Planck, JCAP 11 (2015) 031 [arXiv:1502.01983] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Errard, S.M. Feeney, H.V. Peiris and A.H. Jaffe, Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, JCAP 03 (2016) 052 [arXiv:1509.06770] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C.P. Burgess, M. Cicoli, M. Gomez-Reino, F. Quevedo, G. Tasinato and I. Zavala, Non-standard primordial fluctuations and nonGaussianity in string inflation, JHEP 08 (2010) 045 [arXiv:1005.4840] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    R. Minasian, T.G. Pugh and R. Savelli, F-theory at order α ′3, JHEP 10 (2015) 050 [arXiv:1506.06756] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of Calabi-Yau orientifolds, JHEP 12 (2014) 077 [arXiv:1407.0027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Haack and J.U. Kang, One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds, JHEP 02 (2016) 160 [arXiv:1511.03957] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Halverson, H. Jockers, J.M. Lapan and D.R. Morrison, Perturbative Corrections to Kähler Moduli Spaces, Commun. Math. Phys. 333 (2015) 1563 [arXiv:1308.2157] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    M.T. Grisaru, D.I. Kazakov and D. Zanon, Five Loop Divergences for the N = 2 Supersymmetric Nonlinear σ Model, Nucl. Phys. B 287 (1987) 189 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J.P. Conlon and F. Quevedo, Astrophysical and cosmological implications of large volume string compactifications, JCAP 08 (2007) 019 [arXiv:0705.3460] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Cicoli and F. Muia, General Analysis of Dark Radiation in Sequestered String Models, JHEP 12 (2015) 152 [arXiv:1511.05447] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Mazumdar and P. Shukla, Some inequalities bridging stringy parameters and cosmological observables, arXiv:1411.4636 [INSPIRE].
  47. [47]
    S.L. Parameswaran and I. Zavala, Prospects for Primordial Gravitational Waves in String Inflation, arXiv:1606.02537 [INSPIRE].
  48. [48]
    M. Cicoli and A. Mazumdar, Reheating for Closed String Inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Cicoli and A. Mazumdar, Inflation in string theory: A graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Michele Cicoli
    • 1
    • 2
    • 3
    Email author
  • David Ciupke
    • 4
  • Senarath de Alwis
    • 5
  • Francesco Muia
    • 2
  1. 1.Dipartimento di Fisica ed AstronomiaUniversità di BolognaBolognaItaly
  2. 2.INFN, Sezione di BolognaBolognaItaly
  3. 3.Abdus Salam ICTPTriesteItaly
  4. 4.Theory Group, Deutsches Elektronen-Synchrotron DESYHamburgGermany
  5. 5.Physics DepartmentUniversity of ColoradoBoulderU.S.A.

Personalised recommendations