Advertisement

Journal of High Energy Physics

, 2016:18 | Cite as

Constraints on Z′ models from LHC dijet searches and implications for dark matter

  • Malcolm Fairbairn
  • John Heal
  • Felix KahlhoeferEmail author
  • Patrick Tunney
Open Access
Regular Article - Theoretical Physics

Abstract

We analyse a combination of ATLAS and CMS searches for dijet resonances at run I and run II, presenting the results in a way that can be easily applied to a generic Z′ model. As an illustrative example, we consider a simple model of a Z′ coupling to quarks and dark matter. We first study a benchmark case with fixed couplings and then focus on the assumption that the Z′ is responsible for setting the dark matter relic abundance. Dijet constraints place significant bounds on this scenario, allowing us to narrow down the allowed range of dark matter masses for given Z′ mass and width.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].
  2. [2]
    CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].
  3. [3]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  4. [4]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  5. [5]
    CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s}=8 \) TeV with the novel CMS technique of data scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    U. Baur, I. Hinchliffe and D. Zeppenfeld, Excited Quark Production at Hadron Colliders, Int. J. Mod. Phys. A 2 (1987) 1285 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    U. Baur, M. Spira and P.M. Zerwas, Excited Quark and Lepton Production at Hadron Colliders, Phys. Rev. D 42 (1990) 815 [INSPIRE].ADSGoogle Scholar
  9. [9]
    P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].
  10. [10]
    B.A. Dobrescu and F. Yu, Coupling-mass mapping of dijet peak searches, Phys. Rev. D 88 (2013) 035021 [arXiv:1306.2629] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.-W. Chiang, T. Nomura and K. Yagyu, Leptophobic Zin models with multiple Higgs doublet fields, JHEP 05 (2015) 127 [arXiv:1502.00855] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Ruling out minimal anomaly free U(1) extensions of the Standard Model, arXiv:1605.04855 [INSPIRE].
  13. [13]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P.J. Fox and C. Williams, Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Zportal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Zand dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond Effective Field Theory for Dark Matter Searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: Vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z′, Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, Making the Most of the Relic Density for Dark Matter Searches at the LHC 14 TeV Run, JCAP 03 (2015) 022 [arXiv:1410.7409] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Fairbairn and J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D 90 (2014) 115019 [arXiv:1406.3288] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Jacques and K. Nordström, Mapping monojet constraints onto Simplified Dark Matter Models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the ZPortal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches, JHEP 05 (2016) 112 [arXiv:1603.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z’, arXiv:1605.06513 [INSPIRE].
  29. [29]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  31. [31]
    H. An, X. Ji and L.-T. Wang, Light Dark Matter and ZDark Force at Colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. An, R. Huo and L.-T. Wang, Searching for Low Mass Dark Portal at the LHC, Phys. Dark Univ. 2 (2013) 50 [arXiv:1212.2221] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].
  40. [40]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z’ physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Das, N. Nagata and N. Okada, Testing the 2-TeV Resonance with Trileptons, JHEP 03 (2016) 049 [arXiv:1601.05079] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Duerr and P. Fileviez Perez, Baryonic Dark Matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Ohmer and H.H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  50. [50]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  51. [51]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  55. [55]
    CMS Collaboration, Search for dark matter production in association with jets, or hadronically decaying W or Z boson at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-013 (2016).
  56. [56]
    N. Okada and S. Okada, Z BL portal dark matter and LHC Run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Pukhov, A. Belyaev and N. Christensen, CalcHEP User’s manual for version 3.3.6, http://theory.sinp.msu.ru/~pukhov/CALCHEP/calchep_man_3.3.6.pdf.

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Malcolm Fairbairn
    • 1
  • John Heal
    • 1
  • Felix Kahlhoefer
    • 2
    Email author
  • Patrick Tunney
    • 1
  1. 1.Physics, King’s College LondonLondonU.K.
  2. 2.DESYHamburgGermany

Personalised recommendations