Journal of High Energy Physics

, 2016:8 | Cite as

Regularized degenerate multi-solitons

Open Access
Regular Article - Theoretical Physics

Abstract

We report complex \( \mathcal{P}\mathcal{T} \)-symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota’s direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

Keywords

Integrable Field Theories Integrable Hierarchies Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.J. Olver and D.H. Sattinger, Solitons in physics, mathematics, and nonlinear optics, Springer Science & Business Media 25, (2012).Google Scholar
  2. [2]
    J.E. Bjorkholm and A.A. Ashkin, CW self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32 (1974) 129.ADSCrossRefGoogle Scholar
  3. [3]
    J. von Neuman and E. Wigner, Über merkwü rdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physikalische Zeitschrift 30 (1929) 467.ADSGoogle Scholar
  4. [4]
    M. Kovalyov, On a class of solutions of KdV, J. Differ. Equat. 213 (2005) 1.ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Kovalyov, On a class of solutions of the sine-Gordon equation, J. Phys. A 42 (2009) 495207.MathSciNetMATHGoogle Scholar
  6. [6]
    C.M. Bender and S. Boettcher, Real spectra in nonHermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998) 5243 [physics/9712001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947 [hep-th/0703096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Mostafazadeh, Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom. Meth. Mod. Phys. 7 (2010) 1191 [arXiv:0810.5643] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Z.H. Musslimani, K.G. Makris, R. El-Ganainy and D.N. Christodoulides, Optical Solitons in PT Periodic Potentials, Phys. Rev. Lett. 100 (2008) 030402 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    K.G. Makris, R. El-Ganainy, D.N. Christodoulides and Z.H. Musslimani, PT-symmetric optical lattices, Phys. Rev. A 81 (2010) 063807.ADSCrossRefMATHGoogle Scholar
  11. [11]
    A. Guo et al., Observation of PT-Symmetry Breaking in Complex Optical Potentials, Phys. Rev. Lett. 103 (2009) 093902 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Cen and A. Fring, Complex solitons with real energies, J. Phys. A 49 (2016) 365202 [arXiv:1602.05465] [INSPIRE].ADSGoogle Scholar
  13. [13]
    F. Correa, V. Jakubsky and M.S. Plyushchay, PT-symmetric invisible defects and confluent Darboux-Crum transformations, Phys. Rev. A 92 (2015) 023839 [arXiv:1506.00991] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Darboux, On a proposition relative to linear equations, Comptes Rendus Acad. Sci. Paris 94 (1882) 1456 [physics/9908003].MATHGoogle Scholar
  15. [15]
    M.M. Crum, Associated Sturm-Liouville systems, Q. J. Math. 6 (1955) 121 [physics/9908019].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    V.B. Matveev, Asymptotics of the multipositon-soliton τ function of the Korteweg-de Vries equation and the supertransparency, J. Math. Phys. 35 (1994) 2955.ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    V.B. Matveev and M.A. Salle, Darboux transformation and solitons, Springer, Berlin, Germany (1991).CrossRefMATHGoogle Scholar
  18. [18]
    R. Hirota, Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons, Phys. Rev. Lett. 27 (1971) 1192 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    D.J. Korteweg and G. deVries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895) 422.Google Scholar
  20. [20]
    R. Hirota and J. Satsuma, Soliton Solutions of a Coupled Korteweg-de Vries Equation, Phys. Lett. A 85 (1981) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Ito, Symmetries and conservation laws of a coupled nonlinear wave equation, Phys. Lett. A 91 (1982) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Fring, PT-symmetric Deformations of the Korteweg-de Vries Equation, J. Phys. A 40 (2007) 4215 [math-ph/0701036] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  23. [23]
    G.L. Lamb Jr., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 43 (1971) 99 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    L. Bianchi, Vorlesungen über Differentialgeometrie, Teubner, Leipzig, Germany (1927).Google Scholar
  25. [25]
    A. Arancibia and M.S. Plyushchay, Chiral asymmetry in propagation of soliton defects in crystalline backgrounds, Phys. Rev. D 92 (2015) 105009 [arXiv:1507.07060] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    J. Cen, F. Correa and A. Fring, Time-delay and reality conditions for complex solitons, arXiv:1608.01691.

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Instituto de Ciencias Físicas y MatemáticasUniversidad Austral de ChileValdiviaChile
  2. 2.Institut für Theoretische Physik and Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany
  3. 3.Department of MathematicsCity University LondonLondonU.K.

Personalised recommendations