Advertisement

Journal of High Energy Physics

, 2015:203 | Cite as

Holographic entropy inequalities and gapped phases of matter

  • Ning Bao
  • ChunJun CaoEmail author
  • Michael Walter
  • Zitao Wang
Open Access
Regular Article - Theoretical Physics

Abstract

We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holo-graphic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

Keywords

AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Topological States of Matter 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.M. Wolf et al., Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M.B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech. (2007) P08024 [arXiv:0705.2024].
  3. [3]
    J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropyA review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Linden, F. Matúš, M.B. Ruskai and A. Winter, The quantum entropy cone of stabiliser states, arXiv:1302.5453.
  9. [9]
    D. Gross and M. Walter, Stabilizer information inequalities from phase space distributions, J. Math. Phys. 54 (2013) 082201.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Walter, Multipartite quantum states and their marginals, Ph.D. thesis, ETH Zurich, Zurich, Switzerland (2014), arXiv:1410.6820.
  11. [11]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefzbMATHGoogle Scholar
  13. [13]
    J. Preskill, Lecture notes on quantum computation (2004).Google Scholar
  14. [14]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Levin and X.G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].ADSCrossRefGoogle Scholar
  16. [16]
    T. Grover, A.M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    Z. Zhang and R. Yeung, A non-shannon-type conditional inequality of information quantities, IEEE Trans. Infomat. Theor. 43 (1997) 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Pippenger, The inequalities of quantum information theory, Tech. Rep., Vancouver Canada (2002).Google Scholar
  20. [20]
    N. Linden and A. Winter, A new inequality for the von Neumann entropy, Comm. Math. Phys. 259 (2005) 129 [quant-ph/0406162].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    B. Ibinson, Quantum information and entropy, Ph.D. thesis, University of Bristol, Bristol, U.K. (2006).Google Scholar
  22. [22]
    Z. Zhang and R. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Informat. Theor. 44 (1998) 1440.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R. Dougherty, C. Freiling and K. Zeger, Six new non-shannon information inequalities, talk given at the IEEE International Symposium on Information Theory, July 6-12, Seattle U.S.A. (2006).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Ning Bao
    • 1
    • 2
  • ChunJun Cao
    • 2
    Email author
  • Michael Walter
    • 3
  • Zitao Wang
    • 1
    • 2
  1. 1.Institute for Quantum Information and Matter, California Institute of TechnologyPasadenaUnited States
  2. 2.Walter Burke Institute for Theoretical Physics, California Institute of TechnologyPasadenaUnited States
  3. 3.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordUnited States

Personalised recommendations