Holographic entropy inequalities and gapped phases of matter

Abstract

We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holo-graphic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M.M. Wolf et al., Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    M.B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech. (2007) P08024 [arXiv:0705.2024].

  3. [3]

    J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropyA review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. [4]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    N. Linden, F. Matúš, M.B. Ruskai and A. Winter, The quantum entropy cone of stabiliser states, arXiv:1302.5453.

  9. [9]

    D. Gross and M. Walter, Stabilizer information inequalities from phase space distributions, J. Math. Phys. 54 (2013) 082201.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    M. Walter, Multipartite quantum states and their marginals, Ph.D. thesis, ETH Zurich, Zurich, Switzerland (2014), arXiv:1410.6820.

  11. [11]

    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Article  MATH  Google Scholar 

  13. [13]

    J. Preskill, Lecture notes on quantum computation (2004).

  14. [14]

    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    M. Levin and X.G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].

    ADS  Article  Google Scholar 

  16. [16]

    T. Grover, A.M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    Z. Zhang and R. Yeung, A non-shannon-type conditional inequality of information quantities, IEEE Trans. Infomat. Theor. 43 (1997) 1982.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    N. Pippenger, The inequalities of quantum information theory, Tech. Rep., Vancouver Canada (2002).

  20. [20]

    N. Linden and A. Winter, A new inequality for the von Neumann entropy, Comm. Math. Phys. 259 (2005) 129 [quant-ph/0406162].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    B. Ibinson, Quantum information and entropy, Ph.D. thesis, University of Bristol, Bristol, U.K. (2006).

  22. [22]

    Z. Zhang and R. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Informat. Theor. 44 (1998) 1440.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    R. Dougherty, C. Freiling and K. Zeger, Six new non-shannon information inequalities, talk given at the IEEE International Symposium on Information Theory, July 6-12, Seattle U.S.A. (2006).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to ChunJun Cao.

Additional information

ArXiv ePrint: 1507.05650

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, N., Cao, C., Walter, M. et al. Holographic entropy inequalities and gapped phases of matter. J. High Energ. Phys. 2015, 203 (2015). https://doi.org/10.1007/JHEP09(2015)203

Download citation

Keywords

  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)
  • Topological States of Matter