Journal of High Energy Physics

, 2015:200 | Cite as

Bayesian global analysis of neutrino oscillation data

  • Johannes Bergström
  • M. C. Gonzalez-Garcia
  • Michele Maltoni
  • Thomas Schwetz
Open Access
Regular Article - Theoretical Physics

Abstract

We perform a Bayesian analysis of current neutrino oscillation data. When estimating the oscillation parameters we find that the results generally agree with those of the χ2 method, with some differences involving s232 and CP-violating effects. We discuss the additional subtleties caused by the circular nature of the CP-violating phase, and how it is possible to obtain correlation coefficients with s232. When performing model comparison, we find that there is no significant evidence for any mass ordering, any octant of s232 or a deviation from maximal mixing, nor the presence of CP-violation.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

References

  1. [1]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  2. [2]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  7. [7]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  10. [10]
    NuFIT webpage, http://www.nu-fit.org.
  11. [11]
    R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Hobson et al. eds., Bayesian methods in cosmology, Cambridge University Press, (2010).Google Scholar
  13. [13]
    K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer Science & Business Media, (2007).Google Scholar
  14. [14]
    A.R. Liddle, Information criteria for astrophysical model selection, Mon. Not. Roy. Astron. Soc. 377 (2007) L74 [astro-ph/0701113] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters, Stat. Sci. 14 (1999) 1.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the MultiNest Algorithm, arXiv:1306.2144 [INSPIRE].
  19. [19]
    J.O. Berger, Statistical decision theory and Bayesian analysis, Springer-Verlag, (1985).Google Scholar
  20. [20]
    N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  24. [24]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  25. [25]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  26. [26]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  27. [27]
    Y. Koshio, Solar Results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A, 2-7 June 2014.Google Scholar
  28. [28]
    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  29. [29]
    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].
  31. [31]
    R. Wendell, Atmospheric Results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.Google Scholar
  32. [32]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
  33. [33]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].
  34. [34]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].
  35. [35]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
  36. [36]
    C. Zhang, Recent Results From Daya Bay, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.Google Scholar
  37. [37]
    S.-H. Seo, New Results from RENO, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.Google Scholar
  38. [38]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{\nu}}_e+p\to n+{e}^{+} \) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. (In Russian), JETP Lett. 54 (1991) 253 [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  41. [41]
    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  42. [42]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].ADSGoogle Scholar
  43. [43]
    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  44. [44]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].
  45. [45]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A Study of the Reaction \( {\overline{\nu}}_e+P\to {e}^{+}+N \) on a Nuclear Reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].Google Scholar
  47. [47]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  48. [48]
    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  49. [49]
    T2K collaboration, K. Abe et al., Precise Measurement of the Neutrino Mixing Parameter θ 23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].
  50. [50]
    T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
  51. [51]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.A. Hoeting, D. Madigan, A.E. Raftery and C.T. Volinsky, Bayesian model averaging: a tutorial (with comments by m. clyde, david draper and e. i. george and a rejoinder by the authors, Stat. Sci. 14 (1999) 382.CrossRefMATHGoogle Scholar
  53. [53]
    T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].
  54. [54]
    M. Blennow, P. Coloma and E. Fernandez-Martinez, Reassessing the sensitivity to leptonic CP-violation, JHEP 03 (2015) 005 [arXiv:1407.3274] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, arXiv:1506.0768.
  56. [56]
    S.R. Jammalamadaka and A. SenGupta, Topics in circular statistics, World Scientific, (2001).Google Scholar
  57. [57]
    K.V. Mardia and P.E. Jupp, Directional Statistics, John Wiley & Sons, (2009).Google Scholar
  58. [58]
    N.I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, (1995).Google Scholar
  59. [59]
    T.A. Jones, Matlab functions to analyze directional (azimuthal) data-ii: Correlation, Comput. Geosci. 32 (2006) 176.ADSCrossRefGoogle Scholar
  60. [60]
    N.I. Fisher and A.J. Lee, A correlation coefficient for circular data, Biometrika 70 (1983) 327.MathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    K.P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, U.S.A. (2012).MATHGoogle Scholar
  62. [62]
    A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Phys. Rev. E 69 (2004) 066138 [cond-mat/0305641].
  63. [63]
    R. Moddemeijer, On estimation of entropy and mutual information of continuous distributions, Signal Process. 16 (1989) 233.MathSciNetCrossRefGoogle Scholar
  64. [64]
    R. Steuer, J. Kurths, C.O. Daub, J. Weise and J. Selbig, The mutual information: Detecting and evaluating dependencies between variables, Bioinformatics 18 (2002) S231.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Johannes Bergström
    • 1
  • M. C. Gonzalez-Garcia
    • 1
    • 2
    • 3
  • Michele Maltoni
    • 4
  • Thomas Schwetz
    • 5
    • 6
  1. 1.Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUnited States
  4. 4.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridCantoblancoSpain
  5. 5.Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm UniversityStockholmSweden
  6. 6.Institut für Kernphysik, Karlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations