Bayesian global analysis of neutrino oscillation data

Abstract

We perform a Bayesian analysis of current neutrino oscillation data. When estimating the oscillation parameters we find that the results generally agree with those of the χ 2 method, with some differences involving s 223 and CP-violating effects. We discuss the additional subtleties caused by the circular nature of the CP-violating phase, and how it is possible to obtain correlation coefficients with s 223 . When performing model comparison, we find that there is no significant evidence for any mass ordering, any octant of s 223 or a deviation from maximal mixing, nor the presence of CP-violation.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. [5]

    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  7. [7]

    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    NuFIT webpage, http://www.nu-fit.org.

  11. [11]

    R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    M. Hobson et al. eds., Bayesian methods in cosmology, Cambridge University Press, (2010).

  13. [13]

    K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer Science & Business Media, (2007).

  14. [14]

    A.R. Liddle, Information criteria for astrophysical model selection, Mon. Not. Roy. Astron. Soc. 377 (2007) L74 [astro-ph/0701113] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters, Stat. Sci. 14 (1999) 1.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the MultiNest Algorithm, arXiv:1306.2144 [INSPIRE].

  19. [19]

    J.O. Berger, Statistical decision theory and Bayesian analysis, Springer-Verlag, (1985).

  20. [20]

    N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].

  24. [24]

    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].

  25. [25]

    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].

  26. [26]

    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].

  27. [27]

    Y. Koshio, Solar Results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A, 2-7 June 2014.

  28. [28]

    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].

  29. [29]

    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].

  31. [31]

    R. Wendell, Atmospheric Results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.

  32. [32]

    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].

  33. [33]

    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].

  34. [34]

    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].

  35. [35]

    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].

  36. [36]

    C. Zhang, Recent Results From Daya Bay, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.

  37. [37]

    S.-H. Seo, New Results from RENO, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.

  38. [38]

    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{\nu}}_e+p\to n+{e}^{+} \) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. (In Russian), JETP Lett. 54 (1991) 253 [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].

    Google Scholar 

  42. [42]

    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].

  45. [45]

    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A Study of the Reaction \( {\overline{\nu}}_e+P\to {e}^{+}+N \) on a Nuclear Reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].

    Google Scholar 

  47. [47]

    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].

  48. [48]

    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].

  49. [49]

    T2K collaboration, K. Abe et al., Precise Measurement of the Neutrino Mixing Parameter θ 23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].

  50. [50]

    T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].

  51. [51]

    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    J.A. Hoeting, D. Madigan, A.E. Raftery and C.T. Volinsky, Bayesian model averaging: a tutorial (with comments by m. clyde, david draper and e. i. george and a rejoinder by the authors, Stat. Sci. 14 (1999) 382.

    Article  MATH  Google Scholar 

  53. [53]

    T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].

  54. [54]

    M. Blennow, P. Coloma and E. Fernandez-Martinez, Reassessing the sensitivity to leptonic CP-violation, JHEP 03 (2015) 005 [arXiv:1407.3274] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, arXiv:1506.0768.

  56. [56]

    S.R. Jammalamadaka and A. SenGupta, Topics in circular statistics, World Scientific, (2001).

  57. [57]

    K.V. Mardia and P.E. Jupp, Directional Statistics, John Wiley & Sons, (2009).

  58. [58]

    N.I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, (1995).

  59. [59]

    T.A. Jones, Matlab functions to analyze directional (azimuthal) data-ii: Correlation, Comput. Geosci. 32 (2006) 176.

    ADS  Article  Google Scholar 

  60. [60]

    N.I. Fisher and A.J. Lee, A correlation coefficient for circular data, Biometrika 70 (1983) 327.

    MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    K.P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, U.S.A. (2012).

    MATH  Google Scholar 

  62. [62]

    A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Phys. Rev. E 69 (2004) 066138 [cond-mat/0305641].

  63. [63]

    R. Moddemeijer, On estimation of entropy and mutual information of continuous distributions, Signal Process. 16 (1989) 233.

    MathSciNet  Article  Google Scholar 

  64. [64]

    R. Steuer, J. Kurths, C.O. Daub, J. Weise and J. Selbig, The mutual information: Detecting and evaluating dependencies between variables, Bioinformatics 18 (2002) S231.

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michele Maltoni.

Additional information

ArXiv ePrint: 1507.04366

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergström, J., Gonzalez-Garcia, M.C., Maltoni, M. et al. Bayesian global analysis of neutrino oscillation data. J. High Energ. Phys. 2015, 200 (2015). https://doi.org/10.1007/JHEP09(2015)200

Download citation

Keywords

  • Neutrino Physics
  • Solar and Atmospheric Neutrinos