Advertisement

Journal of High Energy Physics

, 2015:200 | Cite as

Bayesian global analysis of neutrino oscillation data

  • Johannes Bergström
  • M. C. Gonzalez-Garcia
  • Michele Maltoni
  • Thomas Schwetz
Open Access
Regular Article - Theoretical Physics

Abstract

We perform a Bayesian analysis of current neutrino oscillation data. When estimating the oscillation parameters we find that the results generally agree with those of the χ 2 method, with some differences involving s 23 2 and CP-violating effects. We discuss the additional subtleties caused by the circular nature of the CP-violating phase, and how it is possible to obtain correlation coefficients with s 23 2 . When performing model comparison, we find that there is no significant evidence for any mass ordering, any octant of s 23 2 or a deviation from maximal mixing, nor the presence of CP-violation.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  2. [2]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  7. [7]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  10. [10]
    NuFIT webpage, http://www.nu-fit.org.
  11. [11]
    R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Hobson et al. eds., Bayesian methods in cosmology, Cambridge University Press, (2010).Google Scholar
  13. [13]
    K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer Science & Business Media, (2007).Google Scholar
  14. [14]
    A.R. Liddle, Information criteria for astrophysical model selection, Mon. Not. Roy. Astron. Soc. 377 (2007) L74 [astro-ph/0701113] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters, Stat. Sci. 14 (1999) 1.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the MultiNest Algorithm, arXiv:1306.2144 [INSPIRE].
  19. [19]
    J.O. Berger, Statistical decision theory and Bayesian analysis, Springer-Verlag, (1985).Google Scholar
  20. [20]
    N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  24. [24]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  25. [25]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  26. [26]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  27. [27]
    Y. Koshio, Solar Results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A, 2-7 June 2014.Google Scholar
  28. [28]
    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  29. [29]
    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].
  31. [31]
    R. Wendell, Atmospheric Results from Super-Kamiokande, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.Google Scholar
  32. [32]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
  33. [33]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].
  34. [34]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].
  35. [35]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
  36. [36]
    C. Zhang, Recent Results From Daya Bay, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.Google Scholar
  37. [37]
    S.-H. Seo, New Results from RENO, talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, U.S.A., 2-7 June 2014.Google Scholar
  38. [38]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{\nu}}_e+p\to n+{e}^{+} \) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. (In Russian), JETP Lett. 54 (1991) 253 [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  41. [41]
    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  42. [42]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].ADSGoogle Scholar
  43. [43]
    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  44. [44]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].
  45. [45]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A Study of the Reaction \( {\overline{\nu}}_e+P\to {e}^{+}+N \) on a Nuclear Reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].Google Scholar
  47. [47]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  48. [48]
    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  49. [49]
    T2K collaboration, K. Abe et al., Precise Measurement of the Neutrino Mixing Parameter θ 23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].
  50. [50]
    T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
  51. [51]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.A. Hoeting, D. Madigan, A.E. Raftery and C.T. Volinsky, Bayesian model averaging: a tutorial (with comments by m. clyde, david draper and e. i. george and a rejoinder by the authors, Stat. Sci. 14 (1999) 382.CrossRefzbMATHGoogle Scholar
  53. [53]
    T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].
  54. [54]
    M. Blennow, P. Coloma and E. Fernandez-Martinez, Reassessing the sensitivity to leptonic CP-violation, JHEP 03 (2015) 005 [arXiv:1407.3274] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, arXiv:1506.0768.
  56. [56]
    S.R. Jammalamadaka and A. SenGupta, Topics in circular statistics, World Scientific, (2001).Google Scholar
  57. [57]
    K.V. Mardia and P.E. Jupp, Directional Statistics, John Wiley & Sons, (2009).Google Scholar
  58. [58]
    N.I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, (1995).Google Scholar
  59. [59]
    T.A. Jones, Matlab functions to analyze directional (azimuthal) data-ii: Correlation, Comput. Geosci. 32 (2006) 176.ADSCrossRefGoogle Scholar
  60. [60]
    N.I. Fisher and A.J. Lee, A correlation coefficient for circular data, Biometrika 70 (1983) 327.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    K.P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, U.S.A. (2012).zbMATHGoogle Scholar
  62. [62]
    A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Phys. Rev. E 69 (2004) 066138 [cond-mat/0305641].
  63. [63]
    R. Moddemeijer, On estimation of entropy and mutual information of continuous distributions, Signal Process. 16 (1989) 233.MathSciNetCrossRefGoogle Scholar
  64. [64]
    R. Steuer, J. Kurths, C.O. Daub, J. Weise and J. Selbig, The mutual information: Detecting and evaluating dependencies between variables, Bioinformatics 18 (2002) S231.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Johannes Bergström
    • 1
  • M. C. Gonzalez-Garcia
    • 1
    • 2
    • 3
  • Michele Maltoni
    • 4
  • Thomas Schwetz
    • 5
    • 6
  1. 1.Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUnited States
  4. 4.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridCantoblancoSpain
  5. 5.Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm UniversityStockholmSweden
  6. 6.Institut für Kernphysik, Karlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations