Journal of High Energy Physics

, 2015:189 | Cite as

Renormalization group constraints on new top interactions from electroweak precision data

Open Access
Regular Article - Theoretical Physics

Abstract

Anomalous interactions involving the top quark contribute to some of the most difficult observables to directly access experimentally. They can give however a sizeable correction to very precisely measured observables at the loop level. Using a model-independent effective Lagrangian approach, we present the leading indirect constraints on dimension-six effective operators involving the top quark from electroweak precision data. They represent the most stringent constraints on these interactions, some of which may be directly testable in future colliders.

Keywords

Beyond Standard Model Phenomenological Models Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings, Nucl. Phys. B 821 (2009) 215 [arXiv:0904.2387] [INSPIRE
  3. [3]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].
  4. [4]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the tevatron \( t\overline{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, Phys. Lett. B 703 (2011) 306 [arXiv:1104.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing top-Higgs non-standard interactions at the LHC, JHEP 07 (2012) 036 [Erratum ibid. 1303 (2013) 032] [arXiv:1205.1065] [INSPIRE].
  9. [9]
    M. Fabbrichesi, M. Pinamonti and A. Tonero, Stringent limits on top-quark compositeness from \( t\overline{t} \) production at the Tevatron and the LHC, Phys. Rev. D 89 (2014) 074028 [arXiv:1307.5750] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Fabbrichesi, M. Pinamonti and A. Tonero, Limits on anomalous top quark gauge couplings from Tevatron and LHC data, Eur. Phys. J. C 74 (2014) 3193 [arXiv:1406.5393] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    Q.-H. Cao, B. Yan, J.-H. Yu and C. Zhang, A general analysis of W tb anomalous couplings, arXiv:1504.03785 [INSPIRE].
  12. [12]
    C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Zhang, Effective approach to top-quark decay and FCNC processes at NLO accuracy, J. Phys. Conf. Ser. 556 (2014) 012030 [arXiv:1410.2825] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. De Rujula, M.B. Gavela, P. Hernández and E. Masso, The selfcouplings of vector bosons: does LEP-1 obviate LEP-2?, Nucl. Phys. B 384 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy constraints on electroweak three gauge boson couplings, Phys. Lett. B 283 (1992) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Alam, S. Dawson and R. Szalapski, Low-energy constraints on new physics revisited, Phys. Rev. D 57 (1998) 1577 [hep-ph/9706542] [INSPIRE].ADSGoogle Scholar
  19. [19]
    H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on electroweak effective operators at one loop, Phys. Rev. D 88 (2013) 015028 [arXiv:1306.3380] [INSPIRE].ADSMATHGoogle Scholar
  20. [20]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    ATLAS, CMS collaboration, G. Aad et al., Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  29. [29]
    ATLAS, CDF, CMS, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  30. [30]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  31. [31]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  32. [32]
    CDF, D0 collaboration, T.E.W. Group, 2012 update of the Combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].
  33. [33]
    Tevatron Electroweak Working Group, CDF, DELPHI, SLD Electroweak and Heavy Flavour Groups, ALEPH, LEP Electroweak Working Group, SLD, OPAL, D0, L3 collaboration, L.E.W. Group, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].
  34. [34]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  35. [35]
    M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Awramik, M. Czakon, A. Freitas and B.A. Kniehl, Two-loop electroweak fermionic corrections to \( { \sin}^2{\theta}^b{\overline{b}}_{eff} \), Nucl. Phys. B 813 (2009) 174 [arXiv:0811.1364] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    A. Freitas, Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson, JHEP 04 (2014) 070 [arXiv:1401.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].ADSGoogle Scholar
  41. [41]
    F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. de Blas, Electroweak limits on physics beyond the standard model, EPJ Web Conf. 60 (2013) 19008 [arXiv:1307.6173] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Ellis, V. Sanz and T. You, The effective standard model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    J. de Blas et al., in preparation.Google Scholar
  49. [49]
    J. de Blas et al., Global bayesian analysis of the Higgs-boson couplings, arXiv:1410.4204 [INSPIRE].
  50. [50]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(hγγ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].ADSGoogle Scholar
  57. [57]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].CrossRefMATHGoogle Scholar
  59. [59]
    B. Grzadkowski, Z. Hioki and M. Szafranski, Four Fermi effective operators in top quark production and decay, Phys. Rev. D 58 (1998) 035002 [hep-ph/9712357] [INSPIRE].ADSGoogle Scholar
  60. [60]
    H. Baer et al., The International Linear Collider technical design reportVolume 2: physics, arXiv:1306.6352 [INSPIRE].
  61. [61]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  62. [62]
    E. Devetak, A. Nomerotski and M. Peskin, Top quark anomalous couplings at the International Linear Collider, Phys. Rev. D 84 (2011) 034029 [arXiv:1005.1756] [INSPIRE].ADSGoogle Scholar
  63. [63]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  64. [64]
    A. Buckley et al., A global fit of top quark effective theory to data, arXiv:1506.08845 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.INFN — Sezione di RomaRomeItaly
  2. 2.DESYHamburgGermany
  3. 3.Departamento de Física Teórica y del Cosmos and CAFPEUniversidad de GranadaGranadaSpain

Personalised recommendations