Angular analysis and differential branching fraction of the decay B 0 s  → ϕμ + μ

Abstract

An angular analysis and a measurement of the differential branching fraction of the decay B 0 s  → ϕμ + μ are presented, using data corresponding to an integrated luminosity of 3.0 fb−1 of pp collisions recorded by the LHCb experiment at \( \sqrt{s}=7 \) and 8 TeV. Measurements are reported as a function of q 2, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range 1 < q 2 < 6 GeV2 /c 4, where precise theoretical calculations are available, the differential branching fraction is found to be more than 3σ below the Standard Model predictions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    CDF collaboration, T. Aaltonen et al., Measurement of the forward-backward asymmetry in the BK (*) μ + μ decay and first observation of the B 0 s  → ϕμ + μ decay, Phys. Rev. Lett. 106 (2011) 161801 [arXiv:1101.1028] [INSPIRE].

  2. [2]

    CDF collaboration, T. Aaltonen et al., Observation of the baryonic flavor-changing neutral current decay Λ b → Λμ + μ , Phys. Rev. Lett. 107 (2011) 201802 [arXiv:1107.3753] [INSPIRE].

  3. [3]

    LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0 s  → ϕμ + μ , JHEP 07 (2013) 084 [arXiv:1305.2168] [INSPIRE].

  4. [4]

    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A. Bharucha, D.M. Straub and R. Zwicky, BVℓ + in the standard model from light-cone sum rules, arXiv:1503.05534 [INSPIRE].

  6. [6]

    LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0K *0 μ + μ , JHEP 08 (2013) 131 [arXiv:1304.6325] [INSPIRE].

  7. [7]

    LHCb collaboration, Differential branching fractions and isospin asymmetries of BK (*) μ + μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].

  8. [8]

    LHCb collaboration, First observations of the rare decays B +K + π + π μ + μ and B +ϕK + μ + μ , JHEP 10 (2014) 064 [arXiv:1408.1137] [INSPIRE].

  9. [9]

    LHCb collaboration, Measurement of form-factor-independent observables in the decay B 0 K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].

  10. [10]

    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay, LHCb-CONF-2015-002 (2015).

  11. [11]

    LHCb collaboration, Amplitude analysis and the branching fraction measurement of \( {\overline{B}}_s^0\to J/\psi {K}^{+}{K}^{-} \), Phys. Rev. D 87 (2013) 072004 [arXiv:1302.1213] [INSPIRE].

  12. [12]

    C. Bobeth, G. Hiller and G. Piranishvili, CP asymmetries in bar \( B\to {\overline{K}}^{\ast}\left(\to \overline{K}\pi \right)\overline{\ell}\ell \) and untagged \( {\overline{B}}_s \), \( {B}_s\to \phi \left(\to {K}^{+}{K}^{-}\right)\overline{\ell}\ell \) decays at NLO, JHEP 07 (2008) 106 [arXiv:0805.2525] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  14. [14]

    LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].

  15. [15]

    R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].

  16. [16]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. [17]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  18. [18]

    I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].

    Article  Google Scholar 

  19. [19]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    Geant4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

  22. [22]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  23. [23]

    M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

    Article  Google Scholar 

  24. [24]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001.

  25. [25]

    L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California U.S.A. (1984).

  26. [26]

    R. E. Schapire and Y. Freund, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

    MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    L. Mott and W. Roberts, Rare dileptonic decays of Λ b in a quark model, Int. J. Mod. Phys. A 27 (2012) 1250016 [arXiv:1108.6129] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  28. [28]

    LHCb collaboration, Measurement of the differential branching fraction of the decay Λ 0 b  → Λμ + μ , Phys. Lett. B 725 (2013) 25 [arXiv:1306.2577] [INSPIRE].

  29. [29]

    LHCb collaboration, Measurement of the fragmentation fraction ratio f s /f d and its dependence on B meson kinematics, JHEP 04 (2013) 001 [arXiv:1301.5286], f s /f d value updated in LHCb-CONF-2013-011.

  30. [30]

    Belle collaboration, F. Thorne et al., Measurement of the decays B 0 s  → J/ψϕ(1020), B 0 s  → J/ψf 2 (1525) and B 0 s  → J/ψK + K at Belle, Phys. Rev. D 88 (2013) 114006 [arXiv:1309.0704] [INSPIRE].

  31. [31]

    CDF collaboration, F. Abe et al., Ratios of bottom meson branching fractions involving J/ψ mesons and determination of b quark fragmentation fractions, Phys. Rev. D 54 (1996) 6596 [hep-ex/9607003] [INSPIRE].

  32. [32]

    W. Altmannshofer and D.M. Straub, Implications of bs measurements, arXiv:1503.06199 [INSPIRE].

  33. [33]

    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Lattice QCD calculation of form factors describing the rare decays BK * + and B s ϕℓ + , Phys. Rev. D 89 (2014) 094501 [arXiv:1310.3722] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Rare B decays using lattice QCD form factors, PoS(LATTICE2014)372 [arXiv:1501.00367] [INSPIRE].

  35. [35]

    R.R. Horgan et al., Calculation of B 0K *0 μ + μ and B 0 s  → ϕμ + μ observables using form factors from lattice QCD, Phys. Rev. Lett. 112 (2014) 212003 [arXiv:1310.3887] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A. Ali, E. Lunghi, C. Greub and G. Hiller, Improved model independent analysis of semileptonic and radiative rare B decays, Phys. Rev. D 66 (2002) 034002 [hep-ph/0112300] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    P. Ball and R. Zwicky, B d,s ρ, ω, K * , ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    LHCb collaboration, Precision measurement of CP violation in B 0 s  → J/ψK + K decays, Phys. Rev. Lett. 114 (2015) 041801 [arXiv:1411.3104] [INSPIRE].

  40. [40]

    K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk and N. Tuning, Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    B. Sen, M. Walker and M. Woodroofe, On the unified method with nuisance parameters, Statist. Sinica 19 (2009) 301.

    MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors