Journal of High Energy Physics

, 2015:177 | Cite as

Non-minimal scalar multiplets, supersymmetry breaking and dualities

  • Fotis Farakos
  • Ondřej Hulík
  • Pavel Kočí
  • Rikard von Unge
Open Access
Regular Article - Theoretical Physics

Abstract

We study supersymmetry breaking in theories with non-minimal multiplets (such as the complex linear or CNM multiplets), by using superspace higher derivative terms which give rise to new supersymmetry breaking vacuum solutions on top of the standard supersymmetric vacuum. We illustrate the decoupling of the additional massive sectors inside the complex linear and the CNM multiplets and show that only the Goldstino sector is left in the low energy limit. We also discuss the duality between non-minimal scalar multiplets and chiral multiplets in the presence of superspace higher derivatives. From the superspace Noether procedure we calculate the supercurrents, and we show that in the supersymmetry breaking vacuum the chiral superfield X which enters the Ferrara-Zumino supercurrent conservation equation does indeed flow in the IR to the chiral constrained Goldstino superfield. We also provide a description of the Goldstino sector in terms of the Samuel-Wess superfield for the supersymmetry breaking mechanism at hand.

Keywords

Supersymmetry Breaking Superspaces 

References

  1. [1]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].MATHGoogle Scholar
  2. [2]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  3. [3]
    S.J. Gates, Jr. and W. Siegel, Variant superfield representations, Nucl. Phys. B 187 (1981) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B.B. Deo and S.J. Gates, Comments on nonminimal N = 1 scalar multiplets, Nucl. Phys. B 254 (1985) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.J. Gates, Jr., Why auxiliary fields matter: The strange case of the 4D, N = 1 supersymmetric QCD effective action, Phys. Lett. B 365 (1996) 132 [hep-th/9508153] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.J. Gates, Jr., Why auxiliary fields matter: The strange case of the 4D, N = 1 supersymmetric QCD effective action. 2., Nucl. Phys. B 485 (1997) 145 [hep-th/9606109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    M.T. Grisaru, A. Van Proeyen and D. Zanon, Quantization of the complex linear superfield, Nucl. Phys. B 502 (1997) 345 [hep-th/9703081] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. Penati, A. Refolli, A. Van Proeyen and D. Zanon, The nonminimal scalar multiplet: Duality, σ model, β function, Nucl. Phys. B 514 (1998) 460 [hep-th/9710166] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, Feynman rules in N =2 projective superspace: 1. Massless hypermultiplets,Nucl. Phys. B 516(1998) 426 [hep-th/9710250] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    F. Gonzalez-Rey and R. von Unge, Feynman rules in N = 2 projective superspace. 2. Massive hypermultiplets, Nucl. Phys. B 516 (1998) 449 [hep-th/9711135] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. Penati and D. Zanon, The nonminimal scalar multiplet coupled to supersymmetric Yang-Mills, Phys. Lett. B 421 (1998) 223 [hep-th/9712137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Tartaglino Mazzucchelli, Quantization of N = 1 chiral/nonminimal (CNM) scalar multiplets and supersymmetric Yang-Mills theories, Phys. Lett. B 599 (2004) 326 [hep-th/0404222] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S.M. Kuzenko and S.J. Tyler, Complex linear superfield as a model for Goldstino, JHEP 04 (2011) 057 [arXiv:1102.3042] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Farakos, S. Ferrara, A. Kehagias and M. Porrati, Supersymmetry Breaking by Higher Dimension Operators, Nucl. Phys. B 879 (2014) 348 [arXiv:1309.1476] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    F. Farakos and R. von Unge, Complex Linear Effective Theory and Supersymmetry Breaking Vacua, Phys. Rev. D 91 (2015) 045024 [arXiv:1403.0935] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New minimal higher derivative supergravity coupled to matter, Nucl. Phys. B 306 (1988) 160 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1, Phys. Lett. B 190 (1987) 86 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    F. Farakos, A. Kehagias and K. Koutrolikos, Linearized Non-Minimal Higher Curvature Supergravity, Nucl. Phys. B 894 (2015) 569 [arXiv:1501.07562] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Magro, I. Sachs and S. Wolf, Superfield Noether procedure, Annals Phys. 298 (2002) 123 [hep-th/0110131] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S.M. Kuzenko, Variant supercurrent multiplets, JHEP 04 (2010) 022 [arXiv:1002.4932] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S.M. Kuzenko, Variant supercurrents and Noether procedure, Eur. Phys. J. C 71 (2011) 1513 [arXiv:1008.1877] [INSPIRE].ADSGoogle Scholar
  28. [28]
    E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  29. [29]
    E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Samuel and J. Wess, A Superfield Formulation of the Nonlinear Realization of Supersymmetry and Its Coupling to Supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Non-linear MSSM, Nucl. Phys. B 841 (2010) 157 [arXiv:1006.1662] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    E. Dudas, G. von Gersdorff, D.M. Ghilencea, S. Lavignac and J. Parmentier, On non-universal Goldstino couplings to matter, Nucl. Phys. B 855 (2012) 570 [arXiv:1106.5792] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Goldstino and sgoldstino in microscopic models and the constrained superfields formalism, Nucl. Phys. B 857 (2012) 65 [arXiv:1110.5939] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    I. Antoniadis and D.M. Ghilencea, Low-scale SUSY breaking and the (s)goldstino physics, Nucl. Phys. B 870 (2013) 278 [arXiv:1210.8336] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    E. Dudas, C. Petersson and P. Tziveloglou, Low Scale Supersymmetry Breaking and its LHC Signatures, Nucl. Phys. B 870 (2013) 353 [arXiv:1211.5609] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    F. Farakos and A. Kehagias, Decoupling Limits of sGoldstino Modes in Global and Local Supersymmetry, Phys. Lett. B 724 (2013) 322 [arXiv:1302.0866] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    M.D. Goodsell and P. Tziveloglou, Dirac Gauginos in Low Scale Supersymmetry Breaking, Nucl. Phys. B 889 (2014) 650 [arXiv:1407.5076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    E. Dudas and D.M. Ghilencea, Effective operators in SUSY, superfield constraints and searches for a UV completion, JHEP 06 (2015) 124 [arXiv:1503.08319] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S.M. Kuzenko and S.J. Tyler, On the Goldstino actions and their symmetries, JHEP 05 (2011) 055 [arXiv:1102.3043] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    S. Cecotti, S. Ferrara and L. Girardello, Structure of the Scalar Potential in General N = 1 Higher Derivative Supergravity in Four-dimensions, Phys. Lett. B 187 (1987) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    I.L. Buchbinder, S. Kuzenko and Z. Yarevskaya, Supersymmetric effective potential: Superfield approach, Nucl. Phys. B 411 (1994) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    I.L. Buchbinder, S.M. Kuzenko and A. Yu. Petrov, Superfield chiral effective potential, Phys. Lett. B 321 (1994) 372 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X,ϕ) and the Ghost Condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Koehn, J.-L. Lehners and B.A. Ovrut, Higher-Derivative Chiral Superfield Actions Coupled to N = 1 Supergravity, Phys. Rev. D 86 (2012) 085019 [arXiv:1207.3798] [INSPIRE].ADSGoogle Scholar
  45. [45]
    F. Farakos and A. Kehagias, Emerging Potentials in Higher-Derivative Gauged Chiral Models Coupled to N = 1 Supergravity, JHEP 11 (2012) 077 [arXiv:1207.4767] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, Extended Supersymmetry and BPS solutions in baby Skyrme models, JHEP 05 (2013) 108 [arXiv:1304.0774] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Nitta and S. Sasaki, BPS States in Supersymmetric Chiral Models with Higher Derivative Terms, Phys. Rev. D 90 (2014) 105001 [arXiv:1406.7647] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Nitta and S. Sasaki, Higher Derivative Corrections to Manifestly Supersymmetric Nonlinear Realizations, Phys. Rev. D 90 (2014) 105002 [arXiv:1408.4210] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Nitta and S. Sasaki, Classifying BPS States in Supersymmetric Gauge Theories Coupled to Higher Derivative Chiral Models, Phys. Rev. D 91 (2015) 125025 [arXiv:1504.08123] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, arXiv:1505.03092 [INSPIRE].
  51. [51]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Gonzalez-Rey, I.Y. Park and M. Roček, On dual 3-brane actions with partially broken N =2 supersymmetry, Nucl. Phys. B 544 (1999) 243[hep-th/9811130] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    U. Lindström and M. Roček, Scalar Tensor Duality and N = 1, N = 2 Nonlinear σ-models, Nucl. Phys. B 222 (1983) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation Between Different Auxiliary Field Formulations of N = 1 Supergravity Coupled to Matter, Nucl. Phys. B 223 (1983) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K.-i. Shizuya, Supercurrents and Superconformal Symmetry, Phys. Rev. D 35 (1987) 1848 [INSPIRE].ADSGoogle Scholar
  56. [56]
    T.E. Clark and S.T. Love, The Supercurrent and Spontaneously Broken Supersymmetry, Phys. Rev. D 39 (1989) 2391 [INSPIRE].ADSGoogle Scholar
  57. [57]
    T.E. Clark and S.T. Love, The supercurrent in supersymmetric field theories, Int. J. Mod. Phys. A 11 (1996) 2807 [hep-th/9506145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    H. Osborn, N=1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    D. Arnold, J.-P. Derendinger and J. Hartong, On Supercurrent Superfields and Fayet-Iliopoulos Terms in N = 1 Gauge Theories, Nucl. Phys. B 867 (2013) 370 [arXiv:1208.1648] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    S.M. Kuzenko and S.J. Tyler, Comments on the complex linear Goldstino superfield, arXiv:1507.04593 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fotis Farakos
    • 1
  • Ondřej Hulík
    • 1
  • Pavel Kočí
    • 1
  • Rikard von Unge
    • 1
  1. 1.Institute for Theoretical PhysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations