Journal of High Energy Physics

, 2015:173 | Cite as

Entanglement entropy of magnetic electron stars

  • Tameem Albash
  • Clifford V. Johnson
  • Scott MacDonald
Open Access
Regular Article - Theoretical Physics
  • 90 Downloads

Abstract

We study the behavior of the entanglement entropy in (2 + 1)-dimensional strongly coupled theories via the AdS/CFT correspondence. We consider theories at a finite charge density with a magnetic field, with their holographic dual being Einstein-Maxwell-Dilaton theory in four dimensional anti-de Sitter gravity. Restricting to black hole and electron star solutions at zero temperature in the presence of a background magnetic field, we compute their holographic entanglement entropy using the Ryu-Takayanagi prescription for both strip and disk geometries. In the case of the electric or magnetic zero temperature black holes, we are able to confirm that the entanglement entropy is invariant under electric-magnetic duality. In the case of the electron star with a finite magnetic field, for the strip geometry, we find a discontinuity in the first derivative of the entanglement entropy as the strip width is increased.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefMATHGoogle Scholar
  9. [9]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  11. [11]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.A. Hartnoll, D.M. Hofman and A. Tavanfar, Holographically smeared Fermi surface: quantum oscillations and Luttinger count in electron stars, Europhys. Lett. 95 (2011) 31002 [arXiv:1011.2502] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.A. Hartnoll, D.M. Hofman and D. Vegh, Stellar spectroscopy: fermions and holographic Lifshitz criticality, JHEP 08 (2011) 096 [arXiv:1105.3197] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011) 066009 [arXiv:1107.5321] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T. Albash, C.V. Johnson and S. MacDonald, Holography, fractionalization and magnetic fields, Lect. Notes Phys. 871 (2013) 537 [arXiv:1207.1677] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled dilaton dyons, JHEP 03 (2013) 155 [arXiv:1208.2008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    D. Carney and M. Edalati, Dyonic stars for holography, arXiv:1501.06938 [INSPIRE].
  30. [30]
    V. Giangreco M. Puletti, S. Nowling, L. Thorlacius and T. Zingg, Magnetic oscillations in a holographic liquid, Phys. Rev. D 91 (2015) 086008 [arXiv:1501.06459] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    R. de Ritis, M. Lavorgna, G. Platania and C. Stornaiolo, Charged spin fluid in the Einstein-Cartan theory, Phys. Rev. D 31 (1985) 1854 [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    L. Bombelli and R.J. Torrence, Perfect fluids and Ashtekar variables, with applications to Kantowski-Sachs models, Class. Quant. Grav. 7 (1990) 1747 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J.D. Brown, Action functionals for relativistic perfect fluids, Class. Quant. Grav. 10 (1993) 1579 [gr-qc/9304026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Albash and C.V. Johnson, Holographic entanglement entropy and renormalization group flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].
  38. [38]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Albash and C.V. Johnson, Holographic aspects of Fermi liquids in a background magnetic field, J. Phys. A 43 (2010) 345405 [arXiv:0907.5406] [INSPIRE].MathSciNetMATHGoogle Scholar
  40. [40]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    T. Albash and C.V. Johnson, Holographic studies of entanglement entropy in superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Tameem Albash
    • 1
  • Clifford V. Johnson
    • 1
  • Scott MacDonald
    • 1
  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUnited States

Personalised recommendations