Journal of High Energy Physics

, 2015:161 | Cite as

T-branes as branes within branes

  • Andrés CollinucciEmail author
  • Raffaele Savelli
Open Access
Regular Article - Theoretical Physics


Bound states of 7-branes known as ‘T-branes’ have properties that defy usual geometric intuition. For instance, the gauge group of n coincident branes may not be U(n). More surprisingly, matter may show up at unexpected loci, such as points.

By analyzing T-branes of perturbative type IIB string theory in the tachyon condensation picture we gain the following insights: in a large class of models, the tachyon can be diagonalized even though the worldvolume Higgs cannot. In those cases, we see the structure of these bound states more manifestly, thereby drastically simplifying analysis of gauge groups and spectra. Whenever the tachyon is not diagonalizable, matter localizes at unexpected loci, and we find that there is a lower-dimensional brane bound to the 7-brane.


Tachyon Condensation F-Theory D-branes Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2005) 813 [hep-th/0309270] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Donagi and M. Wijnholt, Gluing Branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    E.R. Sharpe, D-branes, derived categories and Grothendieck groups, Nucl. Phys. B 561 (1999) 433 [hep-th/9902116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, hep-th/0403166 [INSPIRE].
  12. [12]
    E. Sharpe, Lectures on D-branes and sheaves, hep-th/0307245 [INSPIRE].
  13. [13]
    A. Collinucci and R. Savelli, F-theory on singular spaces, arXiv:1410.4867 [INSPIRE].
  14. [14]
    T. Gomez and E.R. Sharpe, D-branes and scheme theory, hep-th/0008150 [INSPIRE].
  15. [15]
    J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from Brane Monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D.-E. Diaconescu and S. Gukov, Three-dimensional N = 2 gauge theories and degenerations of Calabi-Yau four folds, Nucl. Phys. B 535 (1998) 171 [hep-th/9804059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T.W. Grimm and H. Hayashi, F-theory fluxes, Chirality and Chern-Simons theories, JHEP 03 (2012) 027 [arXiv:1111.1232] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Cvetič, T.W. Grimm and D. Klevers, Anomaly Cancellation And Abelian Gauge Symmetries In F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Hayashi, C. Lawrie and S. Schäfer-Nameki, Phases, Flops and F-theory: SU(5) Gauge Theories, JHEP 10 (2013) 046 [arXiv:1304.1678] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, (1993).Google Scholar
  21. [21]
    M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006 [hep-th/0002037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Physique Théorique et Mathématique and International Solvay InstitutesUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Institut de Physique Théorique, CEA SaclayGif-surYvetteFrance

Personalised recommendations