Journal of High Energy Physics

, 2015:151 | Cite as

Probing U(1) extensions of the MSSM at the LHC Run I and in dark matter searches

Open Access
Regular Article - Theoretical Physics

Abstract

The U(1) extended supersymmetric standard model (UMSSM) can accommodate a Higgs boson at 125 GeV without relying on large corrections from the top/stop sector. After imposing LHC results on the Higgs sector, on B-physics and on new particle searches as well as dark matter constraints, we show that this model offers two viable dark matter candidates, the right-handed (RH) sneutrino or the neutralino. Limits on super-symmetric partners from LHC simplified model searches are imposed using SModelS and allow for light squarks and gluinos. Moreover the upper limit on the relic abundance often favours scenarios with long-lived particles. Searches for a Z at the LHC remain the most unambiguous probes of this model. Interestingly, the D-term contributions to the sfermion masses allow to explain the anomalous magnetic moment of the muon in specific corners of the parameter space with light smuons or left-handed (LH) sneutrinos. We finally emphasize the interplay between direct searches for dark matter and LHC simplified model searches.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8TeV,JHEP 06 (2013)081[arXiv:1303.4571] [INSPIRE].
  4. [4]
    CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE].
  5. [5]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].
  8. [8]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    H. Baer, V. Barger, D. Mickelson and M. Padeffke-Kirkland, SUSY models under siege: LHC constraints and electroweak fine-tuning, Phys. Rev. D 89 (2014) 115019 [arXiv:1404.2277] [INSPIRE].ADSGoogle Scholar
  10. [10]
    U. Ellwanger and C. Hugonie, The semi-constrained NMSSM satisfying bounds from the LHC, LUX and Planck, JHEP 08 (2014) 046 [arXiv:1405.6647] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Kaminska, G.G. Ross, K. Schmidt-Hoberg and F. Staub, A precision study of the fine tuning in the DiracNMSSM, JHEP 06 (2014) 153 [arXiv:1401.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Farina, M. Perelstein and B. Shakya, Higgs Couplings and Naturalness in λ-SUSY, JHEP 04 (2014) 108 [arXiv:1310.0459] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Athron, M. Binjonaid and S.F. King, Fine Tuning in the Constrained Exceptional Supersymmetric Standard Model, Phys. Rev. D 87 (2013) 115023 [arXiv:1302.5291] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Cvetič, D.A. Demir, J.R. Espinosa, L.L. Everett and P. Langacker, Electroweak breaking and the mu problem in supergravity models with an additional U(1), Phys. Rev. D 56 (1997) 2861 [Erratum ibid. D 58 (1998) 119905] [hep-ph/9703317] [INSPIRE].
  15. [15]
    V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs Sector in Extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].ADSGoogle Scholar
  16. [16]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,Phys. Rev. D 90 (2014) 052005[arXiv:1405.4123] [INSPIRE].
  17. [17]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  18. [18]
    M. Frank and S. Mondal, Light neutralino dark matter in U(1) models, Phys. Rev. D 90 (2014) 075013 [arXiv:1408.2223] [INSPIRE].ADSGoogle Scholar
  19. [19]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, ATLAS-CONF-2015-007 (2015).
  20. [20]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  21. [21]
    P. Athron, D. Harries and A.G. Williams, Z mass limits and the naturalness of supersymmetry, Phys. Rev. D 91 (2015) 115024 [arXiv:1503.08929] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Cvetič and P. Langacker, Implications of Abelian extended gauge structures from string models, Phys. Rev. D 54 (1996) 3570 [hep-ph/9511378] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Cvetič and P. Langacker, New gauge bosons from string models, Mod. Phys. Lett. A 11 (1996) 1247 [hep-ph/9602424] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett and P. Langacker, Classification of flat directions in perturbative heterotic superstring vacua with anomalous U(1), Nucl. Phys. B 525 (1998) 3 [hep-th/9711178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett, P. Langacker and J. Wang, Physics implications of flat directions in free fermionic superstring models 1. Mass spectrum and couplings, Phys. Rev. D 59 (1999) 055005 [hep-ph/9807479] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett, P. Langacker and J. Wang, Physics implications of flat directions in free fermionic superstring models. 2. Renormalization group analysis, Phys. Rev. D 59 (1999) 115003 [hep-ph/9811355] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. London and J.L. Rosner, Extra Gauge Bosons in E 6, Phys. Rev. D 34 (1986) 1530 [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV, Phys. Rev. D 86 (2012) 095003 [arXiv:1206.5028] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Cheung, C.-T. Lu and T.-C. Yuan, Diphoton Rate of the Standard-Model-Like Higgs Boson in the Extra U(1) Extended MSSM, Phys. Rev. D 87 (2013) 075001 [arXiv:1212.1288] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L. Basso and F. Staub, Enhancing h → γγ with staus in SUSY models with extended gauge sector, Phys. Rev. D 87 (2013) 015011 [arXiv:1210.7946] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Frank, L. Selbuz, L. Solmaz and I. Turan, Higgs bosons in supersymmetric U(1) models with CP-violation, Phys. Rev. D 87 (2013) 075007 [arXiv:1302.3427] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Athron, M. Mühlleitner, R. Nevzorov and A.G. Williams, Non-Standard Higgs Decays in U(1) Extensions of the MSSM, JHEP 01 (2015) 153 [arXiv:1410.6288] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Bélanger, J. Da Silva and A. Pukhov, The right-handed sneutrino as thermal dark matter in U(1) extensions of the MSSM, JCAP 12 (2011) 014 [arXiv:1110.2414] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    L. Basso, B. O’Leary, W. Porod and F. Staub, Dark matter scenarios in the minimal SUSY B-L model, JHEP 09 (2012) 054 [arXiv:1207.0507] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Hirsch, W. Porod, L. Reichert and F. Staub, Phenomenology of the minimal supersymmetric U(1)B−L × U(1)R extension of the standard model, Phys. Rev. D 86 (2012) 093018 [arXiv:1206.3516] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, The Stability Of R-Parity In Supersymmetric Models Extended By U(1)B−L, Phys. Rev. D 88 (2013) 015033 [arXiv:1212.4146] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Di Chiara, V. Keus and O. Lebedev, Stabilizing the Higgs potential with a Z , Phys. Lett. B 744 (2015) 59 [arXiv:1412.7036] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Kraml et al., SModelS v1.0: a short user guide, arXiv:1412.1745 [INSPIRE].
  41. [41]
    M.A. Ajaib, B. Dutta, T. Ghosh, I. Gogoladze and Q. Shafi, Neutralinos and Sleptons at the LHC in Light of Muon (g − 2)μ, arXiv:1505.05896 [INSPIRE].
  42. [42]
    J. Kalinowski, S.F. King and J.P. Roberts, Neutralino Dark Matter in the USSM, JHEP 01 (2009) 066 [arXiv:0811.2204] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Langacker and J. Wang, U(1)-prime symmetry breaking in supersymmetric E 6 models, Phys. Rev. D 58 (1998) 115010 [hep-ph/9804428] [INSPIRE].ADSGoogle Scholar
  44. [44]
    V. Barger, P. Langacker, I. Lewis, M. McCaskey, G. Shaughnessy and B. Yencho, Recoil Detection of the Lightest Neutralino in MSSM Singlet Extensions, Phys. Rev. D 75 (2007) 115002 [hep-ph/0702036] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. O’Leary, W. Porod and F. Staub, Mass spectrum of the minimal SUSY B-L model, JHEP 05 (2012) 042 [arXiv:1112.4600] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    M.E. Krauss, B. O’Leary, W. Porod and F. Staub, Implications of gauge kinetic mixing on Zand slepton production at the LHC, Phys. Rev. D 86 (2012) 055017 [arXiv:1206.3513] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Leike, S. Riemann and T. Riemann, Z Z mixing in presence of standard weak loop corrections, hep-ph/9808374 [INSPIRE].
  49. [49]
    J. Erler, P. Langacker, S. Munir and E. Rojas, Improved Constraints on Z Bosons from Electroweak Precision Data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.G. Cerdeno, C. Hugonie, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM, JHEP 12 (2004) 048 [hep-ph/0408102] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  52. [52]
    B.L. Roberts, Status of the Fermilab Muon (g − 2) Experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Hesselbach, F. Franke and H. Fraas, Neutralinos in E 6 inspired supersymmetric U(1)-prime models, Eur. Phys. J. C 23 (2002) 149 [hep-ph/0107080] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.Y. Choi, H.E. Haber, J. Kalinowski and P.M. Zerwas, The neutralino sector in the U(1)-extended supersymmetric standard model, Nucl. Phys. B 778 (2007) 85 [hep-ph/0612218] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    B. de Carlos and J.R. Espinosa, Cold dark matter candidate in a class of supersymmetric models with an extra U(1), Phys. Lett. B 407 (1997) 12 [hep-ph/9705315] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V. Barger, C. Kao, P. Langacker and H.-S. Lee, Neutralino relic density in a supersymmetric U(1) model, Phys. Lett. B 600 (2004) 104 [hep-ph/0408120] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S.F. King, S. Moretti and R. Nevzorov, Theory and phenomenology of an exceptional supersymmetric standard model, Phys. Rev. D 73 (2006) 035009 [hep-ph/0510419] [INSPIRE].ADSGoogle Scholar
  58. [58]
    P. Bechtle et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  61. [61]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  62. [62]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  63. [63]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, Forward-Backward Asymmetry as a Discovery Tool for ZBosons at the LHC, arXiv:1503.02672 [INSPIRE].
  64. [64]
    J.F. Gunion, L. Roszkowski and H.E. Haber, Z Mass Limits, Masses and Couplings of Higgs Bosons and Z Decays in an E 6 Superstring Based Model, Phys. Lett. B 189 (1987) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    T. Gherghetta, T.A. Kaeding and G.L. Kane, Supersymmetric contributions to the decay of an extra Z boson, Phys. Rev. D 57 (1998) 3178 [hep-ph/9701343] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C.-F. Chang, K. Cheung and T.-C. Yuan, Supersymmetric Decays of the Z Boson, JHEP 09 (2011) 058 [arXiv:1107.1133] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Corcella, Phenomenology of supersymmetric Z decays at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 264 [arXiv:1412.6831] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K.S. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1)’s and the R(b) − R(c) crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [INSPIRE].ADSGoogle Scholar
  69. [69]
    Particle Data Group collaboration, K. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  70. [70]
    G. Bélanger, M. Heikinheimo and V. Sanz, Model-Independent Bounds on Squarks from Monophoton Searches, JHEP 08 (2012) 151 [arXiv:1205.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    ATLAS collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012008 [arXiv:1411.1559] [INSPIRE].
  72. [72]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  78. [78]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  80. [80]
    W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D0 collaboration, V.M. Abazov et al., Search for charged massive long-lived particles at \( \sqrt{s}=1.96 \) TeV,Phys. Rev. D 87(2013) 052011[arXiv:1211.2466] [INSPIRE].
  82. [82]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  83. [83]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  84. [84]
    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
  85. [85]
    LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].
  86. [86]
    N. Bernal, M. Losada and F. Mahmoudi, Flavour physics constraints in the BMSSM, JHEP 07 (2011) 074 [arXiv:1104.5395] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  87. [87]
    A. Arbey, M. Battaglia, F. Mahmoudi and D. Martíınez Santos, Supersymmetry confronts B sμ + μ : Present and future status, Phys. Rev. D 87 (2013) 035026 [arXiv:1212.4887] [INSPIRE].ADSGoogle Scholar
  88. [88]
    F. Domingo and U. Ellwanger, Updated Constraints from B Physics on the MSSM and the NMSSM, JHEP 12 (2007) 090 [arXiv:0710.3714] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J. Da Silva, Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables, arXiv:1312.0257.
  90. [90]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  91. [91]
  92. [92]
  93. [93]
    LHCb, CMS collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  94. [94]
    Heavy Flavor Averaging Group, www.slac.stanford.edu/xorg/hfag/osc/PDG 2014/#DMS.
  95. [95]
    Heavy Flavor Averaging Group, www.slac.stanford.edu/xorg/hfag/osc/PDG 2014/#DMD.
  96. [96]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g-2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  98. [98]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  99. [99]
    X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    F. Franke and S. Hesselbach, Production of singlino dominated neutralinos in extended supersymmetric models, Phys. Lett. B 526 (2002) 370 [hep-ph/0111285] [INSPIRE].
  101. [101]
    D. Suematsu, Singlino dominated LSP as CDM candidate in supersymmetric models with an extra U(1), Phys. Rev. D 73 (2006) 035010 [hep-ph/0511299] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Nakamura and D. Suematsu, Supersymmetric extra U(1) models with a singlino dominated LSP, Phys. Rev. D 75 (2007) 055004 [hep-ph/0609061] [INSPIRE].
  103. [103]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  104. [104]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi-LAT Data, arXiv:1503.02641 [INSPIRE].
  105. [105]
    ATLAS, CDF, CMS, D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  106. [106]
    CMS collaboration, Search for New Physics in the Multijets and Missing Momentum Final State in Proton-Proton Collisions at 8 TeV, CMS-PAS-SUS-13-012.
  107. [107]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 with the CMS detector at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-13-019.
  108. [108]
    ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb-1 of proton-proton collisions at \( \sqrt{s}=8 \) TeV., ATLAS-CONF-2013-007 [ATLAS-COM-CONF-2013-006].
  109. [109]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector., ATLAS-CONF-2013-061 [ATLAS-COM-CONF-2013-071].
  110. [110]
    CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, 3, or at least 4 b-quark jets in 8 TeV pp collisions using the variable αT , CMS-PAS-SUS-12-028.
  111. [111]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with a single lepton, large jet multiplicity and multiple b jets, Phys. Lett. B 733 (2014) 328 [arXiv:1311.4937] [INSPIRE].
  112. [112]
    CMS collaboration, Exclusion limits on gluino and top-squark pair production in natural SUSY scenarios with inclusive razor and exclusive single-lepton searches at 8 TeV., CMS-PAS-SUS-14-011.
  113. [113]
    CMS collaboration, Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV, Phys. Lett. B 725 (2013) 243 [arXiv:1305.2390] [INSPIRE].
  114. [114]
    ATLAS collaboration, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-061/fig 12c.png.
  115. [115]
    CMS collaboration, Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052018 [arXiv:1502.00300] [INSPIRE].
  116. [116]
    CMS collaboration, Search for direct production of bottom squark pairs, CMS-PAS-SUS-13-018.
  117. [117]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].
  118. [118]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].
  119. [119]
    L. Edelhäuser, J. Heisig, M. Krämer, L. Oymanns and J. Sonneveld, Constraining supersymmetry at the LHC with simplified models for squark production, JHEP 12 (2014) 022 [arXiv:1410.0965] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    S. Kraml et al., SModelS v1.1, in preparation.Google Scholar
  121. [121]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  122. [122]
    C. Arina, M.E.C. Catalan, S. Kraml, S. Kulkarni and U. Laa, Constraints on sneutrino dark matter from LHC Run 1, JHEP 05 (2015) 142 [arXiv:1503.02960] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar
  124. [124]
    G. Bélanger, D. Ghosh, R. Godbole and S. Kulkarni, Light stop in the MSSM after LHC Run 1, arXiv:1506.00665 [INSPIRE].
  125. [125]
    CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
  126. [126]
    ATLAS collaboration, Search for an Invisibly Decaying Higgs Boson Produced via Vector Boson Fusion in pp Collisions at \( \sqrt{s}=8 \) TeV using the ATLAS Detector at the LHC, ATLAS-CONF-2015-004 [ATLAS-COM-CONF-2015-004].
  127. [127]
    J. Bernon, B. Dumont and S. Kraml, Status of Higgs couplings after run 1 of the LHC, Phys. Rev. D 90 (2014) 071301 [arXiv:1409.1588] [INSPIRE].ADSGoogle Scholar
  128. [128]
    D. Ghosh, R. Godbole, M. Guchait, K. Mohan and D. Sengupta, Looking for an Invisible Higgs Signal at the LHC, Phys. Lett. B 725 (2013) 344 [arXiv:1211.7015] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    M. Bisset, J. Li, N. Kersting, R. Lu, F. Moortgat and S. Moretti, Four-lepton LHC events from MSSM Higgs boson decays into neutralino and chargino pairs, JHEP 08 (2009) 037 [arXiv:0709.1029] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A.J. Williams, C. Boehm, S.M. West and D.A. Vasquez, Regenerating WIMPs in the Light of Direct and Indirect Detection, Phys. Rev. D 86 (2012) 055018 [arXiv:1204.3727] [INSPIRE].ADSGoogle Scholar
  132. [132]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    G. Bélanger, C. Boehm, M. Cirelli, J. Da Silva and A. Pukhov, PAMELA and FERMI-LAT limits on the neutralino-chargino mass degeneracy, JCAP 11 (2012) 028 [arXiv:1208.5009] [INSPIRE].CrossRefGoogle Scholar
  134. [134]
    M.L. Graesser and J. Shelton, Hunting Mixed Top Squark Decays, Phys. Rev. Lett. 111 (2013) 121802 [arXiv:1212.4495] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • G. Bélanger
    • 1
  • J. Da Silva
    • 2
  • U. Laa
    • 1
    • 3
  • A. Pukhov
    • 4
  1. 1.LAPTH, Université Savoie Mont Blanc, CNRSAnnecy-le-Vieux CedexFrance
  2. 2.Consortium for Fundamental Physics, School of Physics and AstronomyThe University of ManchesterManchesterUnited Kingdom
  3. 3.Laboratoire de Physique Subatomique et de CosmologieUniversité Grenoble-Alpes, CNRS/IN2P3GrenobleFrance
  4. 4.Skobeltsyn Institute of Nuclear Physics (SINP MSU)Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations