Advertisement

Journal of High Energy Physics

, 2015:130 | Cite as

The holographic entropy cone

  • Ning Bao
  • Sepehr Nezami
  • Hirosi Ooguri
  • Bogdan Stoica
  • James Sully
  • Michael Walter
Open Access
Regular Article - Theoretical Physics

Abstract

We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes in String Theory 2D Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
  2. [2]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  3. [3]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from entanglement of conformal field theories, Phys. Rev. Lett. 114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Lashkari, C. Rabideau, P. Sabella-Garnier and M. Van Raamsdonk, Inviolable energy conditions from entanglement inequalities, JHEP 06 (2015) 067 [arXiv:1412.3514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Pippenger, What are the laws of information theory?, Spec. Prob. Comm. Comp. Conf., Palo Alto U.S.A. (1986).Google Scholar
  12. [12]
    Z. Zhang and R.W. Yeung, A non-Shannon type conditional inequality of information quantities, IEEE Trans. Inf. Theor. 43 (1997) 1982.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N. Pippenger, The inequalities of quantum information theory, IEEE Trans. Inf. Theor. 49 (2003) 773.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Z. Zhang and R.W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inf. Theor. 44 (1998) 1440.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    F. Matús, Infinitely many information inequalities, in Proc. Int. Symp. Inf. Theor. (ISIT), (2007), pg. 41.Google Scholar
  16. [16]
    R. Dougherty, C. Freiling and K. Zeger, Networks, matroids, and non-Shannon information inequalities, IEEE Trans. Inf. Theor. 53 (2007) 1949.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    N. Linden and A. Winter, A new inequality for the von Neumann entropy, Commun. Math. Phys. 259 (2005) 129 [quant-ph/0406162].
  18. [18]
    J. Cadney, N. Linden and A. Winter, Infinitely many constrained inequalities for the von Neumann entropy, IEEE Trans. Inf. Theor. 58 (2012) 3657 [arXiv:1107.0624].MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    N. Linden, F. Matús, M.B. Ruskai and A. Winter, The quantum entropy cone of stabiliser states, in Proc. 8th TQC Guelph, LIPICS, vol. 22, (2013), pg. 270 [arXiv:1302.5453].
  20. [20]
    D. Gross and M. Walter, Stabilizer information inequalities from phase space distributions, J. Math. Phys. 54 (2013) 082201 [arXiv:1302.6990].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  22. [22]
    V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D. Brill, Black holes and wormholes in (2 + 1)-dimensions, in Mathematical and Quantum Aspects of Relativity and Cosmology, Springer, Germany (2000), pg. 143 [gr-qc/9904083] [INSPIRE].
  27. [27]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    C. Majenz, Constraints on multipartite quantum entropies, Master’s thesis, University of Freiburg, Freiburg Germany (2014).Google Scholar
  29. [29]
    E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Ibinson, Quantum information and entropy, Ph.D. thesis, University of Bristol, Bristol U.K. (2006).Google Scholar
  31. [31]
    M. Walter, Multipartite quantum states and their marginals, Ph.D. thesis, ETH Zurich, Zurich Switzerland (2014) [arXiv:1410.6820].
  32. [32]
    A. Ingleton, Representation of matroids, in Combinatorial mathematics and its applications, D. Welsh ed., Academic Press, U.S.A. (1971), pg. 149.Google Scholar
  33. [33]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Buser, Geometry and spectra of compact Riemannian surfaces, Birkhäuser, U.S.A. (2010).CrossRefMATHGoogle Scholar
  35. [35]
    R. Dougherty, C. Freiling and K. Zeger, Linear rank inequalities for five or more variables, arXiv:0910.0284.
  36. [36]
    J.J. Halliwell and J.B. Hartle, Integration contours for the no boundary wave function of the universe, Phys. Rev. D 41 (1990) 1815 [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    N. Ishibashi, Y. Matsuo and H. Ooguri, Soliton equations and free Fermions on Riemann surfaces, Mod. Phys. Lett. A 2 (1987) 119 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    L. Álvarez-Gaumé, C. Gomez and C. Reina, Loop groups, Grassmanians and string theory, Phys. Lett. B 190 (1987) 55 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    L. Álvarez-Gaumé, C. Gomez, G.W. Moore and C. Vafa, Strings in the operator formalism, Nucl. Phys. B 303 (1988) 455 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in Proceedings of RIMS Symposium on Non-linear Integrable Systems (Kyoto, 1981), M. Jimbo and T. Miwa eds., World Scientific, Singapore (1983), pg. 39.Google Scholar
  41. [41]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M. Mulase, Cohomological structure in soliton equations and Jacobian varieties, J. Diff. Geom. 19 (1984) 403.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    M. Walter, B. Doran, D. Gross and M. Christandl, Entanglement polytopes, Science 340 (2013) 1205 [arXiv:1208.0365] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].MathSciNetMATHGoogle Scholar
  45. [45]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    G. Evenbly and G. Vidal, Tensor network states and geometry, J. Statist. Phys. 145 (2011) 891 [arXiv:1106.1082].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    F. Luo, Geodesic length functions and Teichmüller spaces, J. Diff. Geom. 48 (1998) 275 [math.GT/9801024].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Ning Bao
    • 1
    • 2
  • Sepehr Nezami
    • 3
  • Hirosi Ooguri
    • 2
    • 4
  • Bogdan Stoica
    • 2
  • James Sully
    • 5
  • Michael Walter
    • 3
  1. 1.Institute for Quantum Information and Matter, California Institute of TechnologyPasadenaUnited States
  2. 2.Walter Burke Institute for Theoretical Physics, California Institute of TechnologyPasadenaUnited States
  3. 3.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordUnited States
  4. 4.Kavli Institute for the Physics and Mathematics of the UniverseUniversity of TokyoKashiwaJapan
  5. 5.Theory Group, SLAC National Accelerator LaboratoryStanford UniversityMenlo ParkUnited States

Personalised recommendations