Advertisement

Journal of High Energy Physics

, 2015:128 | Cite as

The two-loop helicity amplitudes for \( q\overline{q}^{\prime}\to {V}_1{V}_2\to 4 \) leptons

  • Thomas Gehrmann
  • Andreas von Manteuffel
  • Lorenzo Tancredi
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the two-loop massless QCD corrections to the helicity amplitudes for the production of two massive vector bosons in quark-antiquark annihilation, allowing for an arbitrary virtuality of the vector bosons: \( q\overline{q}^{\prime}\to {V}_1{V}_2 \). Combining with the leptonic decay currents, we obtain the full two-loop QCD description of the corresponding electroweak four-lepton production processes. The calculation is performed by projecting the two-loop diagrams onto an appropriate basis of Lorentz structures. All two-loop Feynman integrals are reduced to a basis of master integrals, which are then computed using the differential equations method and optimised for numerical performance. We provide a public C++ code which allows for fast and precise numerical evaluations of the amplitudes.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Ohnemus, Order α s calculations of hadronic W ±γ and Zγ production, Phys. Rev. D 47 (1993) 940 [INSPIRE].ADSGoogle Scholar
  2. [2]
    U. Baur, T. Han and J. Ohnemus, QCD corrections to hadronic W γ production with nonstandard W W γ couplings, Phys. Rev. D 48 (1993) 5140 [hep-ph/9305314] [INSPIRE].
  3. [3]
    U. Baur, T. Han and J. Ohnemus, QCD corrections and anomalous couplings in Zγ production at hadron colliders, Phys. Rev. D 57 (1998) 2823 [hep-ph/9710416] [INSPIRE].
  4. [4]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ±γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].
  5. [5]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  6. [6]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].
  7. [7]
    E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].
  8. [8]
    E. Accomando and A. Kaiser, Electroweak corrections and anomalous triple gauge-boson couplings in W + W and W ± Z production at the LHC, Phys. Rev. D 73 (2006) 093006 [hep-ph/0511088] [INSPIRE].
  9. [9]
    E. Accomando, A. Denner and C. Meier, Electroweak corrections to W γ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].
  10. [10]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W → 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in HERWIG++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to W +γ production with leptonic W-boson decays, JHEP 04 (2015) 018 [arXiv:1412.7421] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].
  16. [16]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  17. [17]
    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
  18. [18]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop amplitudes for gluon fusion into two photons, JHEP 09 (2001) 037 [hep-ph/0109078] [INSPIRE].
  20. [20]
    C. Anastasiou, E.W.N. Glover and M.E. Tejeda-Yeomans, Two loop QED and QCD corrections to massless fermion boson scattering, Nucl. Phys. B 629 (2002) 255 [hep-ph/0201274] [INSPIRE].
  21. [21]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q}\to {W}^{\pm}\gamma \) and \( q\overline{q}\to {Z}^0\gamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for g gZ g and g gZ γ, JHEP 04 (2013) 101 [arXiv:1302.2630] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, Phys. Lett. B 731 (2014) 204 [arXiv:1309.7000] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q}\to V\ V \) : the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to V\ V \) , JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C.G. Papadopoulos, D. Tommasini and C. Wever, Two-loop Master Integrals with the Simplified Differential Equations approach, JHEP 01 (2015) 072 [arXiv:1409.6114] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP 11 (2012) 114 [arXiv:1209.2722] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C. Anastasiou et al., NNLO QCD corrections to pp → γγ in the large-N F limit, JHEP 02 (2015) 182 [arXiv:1408.4546] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Denner and T. Sack, Electroweak radiative corrections to e + e Z 0 Z 0, Nucl. Phys. B 306 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K.P.O. Diener, B.A. Kniehl and A. Pilaftsis, Loop effects of exotic leptons on vector boson pair production at e + e colliders, Phys. Rev. D 57 (1998) 2771 [hep-ph/9709361] [INSPIRE].
  37. [37]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  38. [38]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
  39. [39]
    E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top quark approximation, Phys. Lett. B 744 (2015) 43 [arXiv:1503.01274] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].
  43. [43]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. von Manteuffel and C. Studerus, Reduze 2Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
  45. [45]
    C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    C. W. Bauer, A. Frink, and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015] [INSPIRE].
  47. [47]
    R. Lewis, Computer Algebra System Fermat, http://www.bway.net/∼lewis.
  48. [48]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  51. [51]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  52. [52]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  53. [53]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel, JHEP 12 (2013) 038 [arXiv:1309.4450] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A.V. Kotikov, The property of maximal transcendentality in the N = 4 Supersymmetric Yang-Mills, arXiv:1005.5029 [INSPIRE].
  60. [60]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  61. [61]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
  62. [62]
    F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C. Duhr, Mathematical aspects of scattering amplitudes, arXiv:1411.7538 [INSPIRE].
  66. [66]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The Complete Two-Loop Integrated Jet Thrust Distribution In Soft-Collinear Effective Theory, JHEP 03 (2014) 139 [arXiv:1309.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  68. [68]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S. Frixione, A Next-to-leading order calculation of the cross-section for the production of W+ W- pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G. Chachamis, M. Czakon and D. Eiras, W Pair Production at the LHC. I. Two-loop Corrections in the High Energy Limit, JHEP 12 (2008) 003 [arXiv:0802.4028] [INSPIRE].
  73. [73]
    D. Maître and P. Mastrolia, S@M, a Mathematica Implementation of the Spinor-Helicity Formalism, Comput. Phys. Commun. 179 (2008) 501 [arXiv:0710.5559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    B. Haible and R.B. Kreckel, CLN: Class Library for Numbers, http://www.ginac.de/CLN.
  75. [75]
    D. Binosi and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].
  76. [76]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Thomas Gehrmann
    • 1
  • Andreas von Manteuffel
    • 2
  • Lorenzo Tancredi
    • 3
  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland
  2. 2.PRISMA Cluster of Excellence, Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Institut für Theoretische TeilchenphysikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations