Advertisement

Journal of High Energy Physics

, 2015:127 | Cite as

Gluino coannihilation revisited

  • John Ellis
  • Feng LuoEmail author
  • Keith A. Olive
Open Access
Regular Article - Theoretical Physics

Abstract

Some variants of the MSSM feature a strip in parameter space where the lightest neutralino χ is identified as the lightest supersymmetric particle (LSP), the gluino \( \tilde{g} \) is the next-to-lightest supersymmetric particle (NLSP) and is nearly degenerate with χ, and the relic cold dark matter density is brought into the range allowed by astrophysics and cosmology by coannihilation with the gluino NLSP. We calculate the relic density along this gluino coannihilation strip in the MSSM, including the effects of gluino-gluino bound states and initial-state Sommerfeld enhancement, and taking into account the decoupling of the gluino and LSP densities that occurs for large values of the squark mass \( {m}_{\tilde{q}} \). We find that bound-state effects can increase the maximum m χ for which the relic cold dark matter density lies within the range favoured by astrophysics and cosmology by as much as ∼ 50% if \( {m}_{\tilde{q}}/{m}_{\tilde{g}}=1.1 \), and that the LSP may weigh up to ∼ 8 TeV for a wide range of \( {m}_{\tilde{q}}/{m}_{\tilde{g}}\lesssim 100 \).

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  2. [2]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].
  3. [3]
    S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].
  4. [4]
    B. Bhattacherjee, A. Choudhury, K. Ghosh and S. Poddar, Compressed supersymmetry at 14 TeV LHC, Phys. Rev. D 89 (2014) 037702 [arXiv:1308.1526] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].
  9. [9]
    J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [INSPIRE].
  10. [10]
    I. Gogoladze, S. Raza and Q. Shafi, Light Stop from b-tau Yukawa Unification, Phys. Lett. B 706 (2012) 345 [arXiv:1104.3566] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.A. Ajaib, T. Li and Q. Shafi, Stop-Neutralino Coannihilation in the Light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].
  13. [13]
    J.L. Diaz-Cruz, J.R. Ellis, K.A. Olive and Y. Santoso, On the Feasibility of a Stop NLSP in Gravitino Dark Matter Scenarios, JHEP 05 (2007) 003 [hep-ph/0701229] [INSPIRE].
  14. [14]
    J. Harz, B. Herrmann, M. Klasen, K. Kovarik and Q.L. Boulc’h, Neutralino-stop coannihilation into electroweak gauge and Higgs bosons at one loop, Phys. Rev. D 87 (2013) 054031 [arXiv:1212.5241] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Harz, B. Herrmann, M. Klasen and K. Kovarik, One-loop corrections to neutralino-stop coannihilation revisited, Phys. Rev. D 91 (2015) 034028 [arXiv:1409.2898] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.R. Ellis, K.A. Olive and J. Zheng, The Extent of the Stop Coannihilation Strip, Eur. Phys. J. C 74 (2014) 2947 [arXiv:1404.5571] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Raza, Q. Shafi and C.S. Ün, NLSP Gluino and NLSP Stop Scenarios from b-tau Yukawa Unification, arXiv:1412.7672 [INSPIRE].
  18. [18]
    A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of Coannihilation with a Scalar Top Partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Profumo and C.E. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [INSPIRE].
  20. [20]
    D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low Mass Gluino within the Sparticle Landscape, Implications for Dark Matter and Early Discovery Prospects at LHC-7, Phys. Rev. D 83 (2011) 035005 [arXiv:1011.1246] [INSPIRE].ADSGoogle Scholar
  22. [22]
    I. Gogoladze, R. Khalid and Q. Shafi, Yukawa Unification and Neutralino Dark Matter in SU(4)(c) × SU(2)(L) × SU(2)(R), Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Gogoladze, R. Khalid and Q. Shafi, Coannihilation Scenarios and Particle Spectroscopy in SU(4)(c) × SU(2)(L) × SU(2)(R), Phys. Rev. D 80 (2009) 095016 [arXiv:0908.0731] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP Gluino Search at the Tevatron and early LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Harigaya, M. Ibe and T.T. Yanagida, A Closer Look at Gaugino Masses in Pure Gravity Mediation Model/Minimal Split SUSY Model, JHEP 12 (2013) 016 [arXiv:1310.0643] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.L. Evans and K.A. Olive, Universality in Pure Gravity Mediation with Vector Multiplets, Phys. Rev. D 90 (2014) 115020 [arXiv:1408.5102] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89 (2014) 115021 [arXiv:1403.0715] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for Dark Matter Searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.R. Ellis, J.L. Evans, F. Luo and K.A. Olive, Scenarios for Gluino Coannihilation, in preparation (2015).Google Scholar
  31. [31]
    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. 403 (1931) 257.CrossRefzbMATHGoogle Scholar
  32. [32]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  33. [33]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  34. [34]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, Phys. Lett. B 699 (2011) 271 [arXiv:1102.4295] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    W. Fischler, Quark-antiquark potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Schröder, The Static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [INSPIRE].
  38. [38]
    A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Quantum Electrodynamics, Pergamon Press (1971).Google Scholar
  40. [40]
    M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluino pair production at the LHC: the threshold, Nucl. Phys. B 857 (2012) 28 [arXiv:1108.0361] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J.T. Goldman and H. Haber, Gluinonium: the hydrogen atom of supersymmetry, Physica 15D (1985) 181 [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. Hagiwara and H. Yokoya, Bound-state effects on gluino-pair production at hadron colliders, JHEP 10 (2009) 049 [arXiv:0909.3204] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [INSPIRE].
  44. [44]
    P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].
  45. [45]
    M.A. Ajaib, T. Li and Q. Shafi, LHC Constraints on NLSP Gluino and Dark Matter Neutralino in Yukawa Unified Models, Phys. Lett. B 705 (2011) 87 [arXiv:1107.2573] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D.J.H. Chung, G.R. Farrar and E.W. Kolb, On the relic abundance of light photinos, Phys. Rev. D 56 (1997) 6096 [astro-ph/9703145] [INSPIRE].
  47. [47]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar
  48. [48]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  50. [50]
    H. Baer, K.-m. Cheung and J.F. Gunion, A Heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].
  51. [51]
    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  53. [53]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Heavy neutralino relic abundance with Sommerfeld enhancements - a study of pMSSM scenarios, JHEP 03 (2015) 162 [arXiv:1411.6930] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    S. Profumo and A. Provenza, Increasing the neutralino relic abundance with slepton coannihilations: Consequences for indirect dark matter detection, JCAP 12 (2006) 019 [hep-ph/0609290] [INSPIRE].
  57. [57]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [hep-ph/9905481] [INSPIRE].
  58. [58]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of Relic Densities in the Early Universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].
  60. [60]
    J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].
  61. [61]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  62. [62]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.F. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1., Nucl. Phys. B 272 (1986)1 [Erratum ibid. B 402 (1993) 567] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Theoretical Particle Physics and Cosmology Group, Department of PhysicsKing’s College LondonLondonUnited Kingdom
  2. 2.Theory DivisionCERNGeneva 23Switzerland
  3. 3.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUnited States
  4. 4.William I. Fine Theoretical Physics Institute, School of Physics and AstronomyUniversity of MinnesotaMinneapolisUnited States

Personalised recommendations