Advertisement

Journal of High Energy Physics

, 2015:90 | Cite as

Dissecting holographic conductivities

  • Richard A. Davison
  • Blaise Goutéraux
Open Access
Regular Article - Theoretical Physics

Abstract

The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.A. Hartnoll and D.M. Hofman, Locally Critical Resistivities from Umklapp Scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Blake and A. Donos, Quantum Critical Transport and the Hall Angle, Phys. Rev. Lett. 114 (2015) 021601 [arXiv:1406.1659] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B 91 (2015) 195122 [arXiv:1502.04704] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91 (2015) 155126 [arXiv:1501.03165] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Advanced book classics, Perseus Books, (1990).Google Scholar
  11. [11]
    R. Mahajan, M. Barkeshli and S.A. Hartnoll, Non-Fermi liquids and the Wiedemann-Franz law, Phys. Rev. B 88 (2013) 125107 [arXiv:1304.4249] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  13. [13]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Donos, B. Goutéraux and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP 03 (2015) 071 [arXiv:1501.05656] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP 05 (2012) 054 [arXiv:1202.4458] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.A. Hartnoll and C.P. Herzog, Ohms Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, arXiv:1507.07137 [INSPIRE].
  28. [28]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [Erratum ibid. D 78 (2008) 089902] [arXiv:0712.2916] [INSPIRE].
  32. [32]
    A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Amoretti and D. Musso, Universal formulae for thermoelectric transport with magnetic field and disorder, arXiv:1502.02631 [INSPIRE].
  34. [34]
    M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography, JHEP 08 (2015) 124 [arXiv:1502.03789] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect, JHEP 07 (2015) 027 [arXiv:1502.05386] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    I.A. Hayes et al., Magnetoresistance near a quantum critical point, arXiv:1412.6484.
  37. [37]
    S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601 [arXiv:1402.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.K. O’Keeffe and A.W. Peet, Perturbatively charged holographic disorder, Phys. Rev. D 92 (2015) 046004 [arXiv:1504.03288] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Emergent scale invariance of disordered horizons, arXiv:1504.03324 [INSPIRE].
  40. [40]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Conformal field theories in d = 4 with a helical twist, Phys. Rev. D 91 (2015) 066003 [arXiv:1412.3446] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Lorentz Institute for Theoretical PhysicsLeidenNetherlands
  2. 2.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordUnited States
  3. 3.APC, Université Paris 7, CNRS, CEAParis Cedex 13France

Personalised recommendations