Advertisement

Journal of High Energy Physics

, 2015:72 | Cite as

2d (0,2) quiver gauge theories and D-branes

  • Sebastián Franco
  • Dongwook Ghim
  • Sangmin Lee
  • Rak-Kyeong Seong
  • Daisuke Yokoyama
Open Access
Regular Article - Theoretical Physics

Abstract

We initiate a systematic study of 2d (0, 2) quiver gauge theories on the world-volume of D1-branes probing singular toric Calabi-Yau 4-folds. We present an algorithm for efficiently calculating the classical mesonic moduli spaces of these theories, which correspond to the probed geometries. We also introduce a systematic procedure for constructing the gauge theories for arbitrary toric singularities by means of partial resolution, which translates to higgsing in the field theory. Finally, we introduce Brane Brick Models, a novel class of brane configurations that consist of D4-branes suspended from an NS5-brane wrapping a holomorphic surface, tessellating a 3-torus. Brane Brick Models are the 2d analogues of Brane Tilings and allow a direct connection between geometry and gauge theory.

Keywords

Brane Dynamics in Gauge Theories Supersymmetric gauge theory D-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  2. [2]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  4. [4]
    M.R. Douglas and B.R. Greene, Metrics on D-brane orbifolds, Adv. Theor. Math. Phys. 1 (1998) 184 [hep-th/9707214] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C. Beasley, B.R. Greene, C.I. Lazaroiu and M.R. Plesser, D3-branes on partial resolutions of Abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys. B 566 (2000) 599 [hep-th/9907186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, UnHiggsing the del Pezzo, JHEP 08 (2003) 058 [hep-th/0209228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Feng, Y.-H. He and F. Lam, On correspondences between toric singularities and (p, q) webs, Nucl. Phys. B 701 (2004) 334 [hep-th/0403133] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories using branes, JHEP 05 (1998) 001 [hep-th/9801134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Hanany and A.M. Uranga, Brane boxes and branes on singularities, JHEP 05 (1998) 013 [hep-th/9805139] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D.R. Gulotta, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP 10 (2008) 014 [arXiv:0807.3012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    K. Mohri, D-branes and quotient singularities of Calabi-Yau fourfolds, Nucl. Phys. B 521 (1998) 161 [hep-th/9707012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Kutasov and J. Lin, (0, 2) dynamics from four dimensions, Phys. Rev. D 89 (2014) 085025 [arXiv:1310.6032] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D. Kutasov and J. Lin, (0, 2) ADE models from four dimensions, arXiv:1401.5558 [INSPIRE].
  26. [26]
    S. Franco, D. Ghim, S. Lee and R.-K. Seong, Brane bricks, toric Calabi-Yau 4-folds and 2d (0, 2) quivers, to appear.Google Scholar
  27. [27]
    S. Franco, D. Ghim, S. Lee and R.-K. Seong, Brane bricks and 2d (0, 2) triality, to appear.Google Scholar
  28. [28]
    D.-E. Diaconescu and N. Seiberg, The Coulomb branch of (4, 4) supersymmetric field theories in two-dimensions, JHEP 07 (1997) 001 [hep-th/9707158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  32. [32]
    A. Karch, D. Lüst and A. Miemiec, N = 1 supersymmetric gauge theories and supersymmetric three cycles, Nucl. Phys. B 553 (1999) 483 [hep-th/9810254] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    R. Bocklandt, Consistency conditions for dimer models, arXiv:1104.1592 [INSPIRE].
  35. [35]
    A. Ishii and K. Ueda, A note on consistency conditions on dimer models, arXiv:1012.5449.
  36. [36]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    T. Muto, D-branes on orbifolds and topology change, Nucl. Phys. B 521 (1998) 183 [hep-th/9711090] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J. Davey, A. Hanany and R.-K. Seong, Counting orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Hanany and R.-K. Seong, Symmetries of Abelian orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The master space of N = 1 gauge theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Hanany and R.-K. Seong, Brane tilings and reflexive polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Hanany and R.-K. Seong, Brane tilings and specular duality, JHEP 08 (2012) 107 [arXiv:1206.2386] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    K.D. Kennaway, Brane tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M 2-brane theories for generic toric singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    R. D’Auria, P. Fré and P. van Nieuwenhuizen, N = 2 matter coupled supergravity from compactification on a coset G/H possessing an additional Killing vector, Phys. Lett. B 136 (1984) 347 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    D.P. Sorokin, V. Tkach and D. Volkov, Kaluza-Klein theories and spontaneous compactification mechanisms of extra space dimensions, Proceedings, Quantum Gravity, Moscow Russia (1984), pg. 376 [INSPIRE].
  51. [51]
    D.P. Sorokin, V.I. Tkach and D.V. Volkov, On the relationship between compactified vacua of D=11 and D=10 supergravities, Phys. Lett. B 161 (1985) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    C.-h. Ahn and H. Kim, Branes at C 4 /Γ singularity from toric geometry, JHEP 04 (1999) 012 [hep-th/9903181] [INSPIRE].
  56. [56]
    T. Sarkar, D-brane gauge theories from toric singularities of the form C 3 /Γ and C 4 /Γ, Nucl. Phys. B 595 (2001) 201 [hep-th/0005166] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Sebastián Franco
    • 1
    • 2
  • Dongwook Ghim
    • 3
  • Sangmin Lee
    • 3
    • 4
    • 5
    • 6
  • Rak-Kyeong Seong
    • 6
  • Daisuke Yokoyama
    • 7
  1. 1.Physics DepartmentThe City College of the CUNYNew YorkUnited States
  2. 2.The Graduate School and University Center, The City University of New YorkNew YorkUnited States
  3. 3.Department of Physics and AstronomySeoul National UniversitySeoulSouth Korea
  4. 4.Center for Theoretical PhysicsSeoul National UniversitySeoulSouth Korea
  5. 5.College of Liberal StudiesSeoul National UniversitySeoulSouth Korea
  6. 6.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea
  7. 7.Department of MathematicsKing’s College LondonLondonUnited Kingdom

Personalised recommendations