Advertisement

Journal of High Energy Physics

, 2015:54 | Cite as

Superconformal Chern-Simons partition functions of affine D-type quiver from Fermi gas

  • Sanefumi Moriyama
  • Tomoki NosakaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the partition function of the superconformal Chern-Simons theories with the quiver diagram being the affine D-type Dynkin diagram. Rewriting the partition function into that of a Fermi gas system, we show that the perturbative expansions in 1/N are summed up to an Airy function, as in the ABJM theory or more generally the theories of the affine A-type quiver. As a corollary, this provides a proof for the previous proposal in the large N limit. For special values of the Chern-Simons levels, we further identify three species of the membrane instantons and also conjecture an exact expression of the overall constant, which corresponds to the constant map in the topological string theory.

Keywords

Supersymmetric gauge theory Matrix Models Chern-Simons Theories M- Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  2. [2]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D.R. Gulotta, J.P. Ang and C.P. Herzog, Matrix Models for Supersymmetric Chern-Simons Theories with an ADE Classification, JHEP 01 (2012) 132 [arXiv:1111.1744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator Counting and T(U(N)), JHEP 12 (2011) 077 [arXiv:1105.2817] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D.R. Gulotta, C.P. Herzog and T. Nishioka, The ABCDEFs of Matrix Models for Supersymmetric Chern-Simons Theories, JHEP 04 (2012) 138 [arXiv:1201.6360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P.M. Crichigno, C.P. Herzog and D. Jain, Free Energy of D n Quiver Chern-Simons Theories, JHEP 03 (2013) 039 [arXiv:1211.1388] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact Results on the ABJM Fermi Gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Putrov and M. Yamazaki, Exact ABJM Partition Function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi Gas Approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Honda and S. Moriyama, Instanton Effects in Orbifold ABJM Theory, JHEP 08 (2014) 091 [arXiv:1404.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Moriyama and T. Nosaka, Partition Functions of Superconformal Chern-Simons Theories from Fermi Gas Approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    S. Moriyama and T. Nosaka, Exact Instanton Expansion of Superconformal Chern-Simons Theories from Topological Strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Mezei and S.S. Pufu, Three-sphere free energy for classical gauge groups, JHEP 02 (2014) 037 [arXiv:1312.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Grassi and M. Mariño, M-theoretic matrix models, JHEP 02 (2015) 115 [arXiv:1403.4276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    Y. Hatsuda and K. Okuyama, Probing non-perturbative effects in M-theory, JHEP 10 (2014) 158 [arXiv:1407.3786] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    N. Drukker and J. Felix, 3d mirror symmetry as a canonical transformation, JHEP 05 (2015) 004 [arXiv:1501.02268] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Assel, N. Drukker and J. Felix, Partition Functions of 3d D-Quivers and Their Mirror Duals from 1d Free Fermions, JHEP 08 (2015) 071 [arXiv:1504.07636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    S. Matsumoto and S. Moriyama, ABJ Fractional Brane from ABJM Wilson Loop, JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Hatsuda, Spectral zeta function and non-perturbative effects in ABJM Fermi-gas, arXiv:1503.07883 [INSPIRE].
  34. [34]
    Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets, JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Matsumoto, α-Pfaffian, pfaffian point process and shifted Schur measure, Linear Algebra Appl. 403 (2005) 369.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceOsaka City UniversityOsakaJapan
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations