Advertisement

Journal of High Energy Physics

, 2015:52 | Cite as

Geometry of 6D RG flows

  • Jonathan J. Heckman
  • David R. Morrison
  • Tom Rudelius
  • Cumrun Vafa
Open Access
Regular Article - Theoretical Physics

Abstract

We study renormalization group flows between six-dimensional superconformal field theories (SCFTs) using their geometric realizations as singular limits of F-theory compactified on elliptically fibered Calabi-Yau threefolds. There are two general types of flows: one corresponds to giving expectation values to scalars in the tensor multiplets (tensor branch flow) realized as resolving the base of the geometry. The other corresponds to giving expectation values to hypermultiplets (Higgs branch flow) realized as complex structure deformations of the geometry. To corroborate this physical picture we calculate the change in the anomaly polynomial for these theories, finding strong evidence for a flow from a UV fixed point to an IR fixed point. Moreover, we find evidence against non-trivial dualities for 6D SCFTs. In addition we find non-trivial RG flows for theories realizing small E 8 instantons on ALE spaces.

Keywords

F-Theory Differential and Algebraic Geometry Conformal and W Symmetry Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  3. [3]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Bershadsky and A. Johansen, Colliding singularities in F-theory and phase transitions, Nucl. Phys. B 489 (1997) 122 [hep-th/9610111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J.D. Blum and K.A. Intriligator, Consistency conditions for branes at orbifold singularities, Nucl. Phys. B 506 (1997) 223 [hep-th/9705030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  16. [16]
    D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6D conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    J.J. Heckman, More on the matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [arXiv:1408.0006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    M. Del Zotto, J.J. Heckman, D.R. Morrison and D.S. Park, 6D SCFTs and gravity, JHEP 06 (2015) 158 [arXiv:1412.6526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    L. Bhardwaj, Classification of 6D N = (1, 0) gauge theories, arXiv:1502.06594 [INSPIRE].
  22. [22]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    K. Ohmori, H. Shimizu and Y. Tachikawa, Anomaly polynomial of E-string theories, JHEP 08 (2014) 002 [arXiv:1404.3887] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6D SCFTs, Prog. Theor. Exp. Phys. 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].CrossRefMATHGoogle Scholar
  25. [25]
    K. Intriligator, 6d, N = (1, 0) Coulomb branch anomaly matching, JHEP 10 (2014) 162 [arXiv:1408.6745] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y. Hayakawa, Degeneration of Calabi-Yau manifold with Weil-Petersson metric, Ph.D. thesis, University of Maryland, College Park U.S.A. (1994) [alg-geom/9507016].
  27. [27]
    C.-L. Wang, On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau manifolds, Math. Res. Lett. 4 (1997) 157.ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    A. Grassi, On minimal models of elliptic threefolds, Math. Ann. 290 (1991) 287.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: a one loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    J.A. Harvey, R. Minasian and G.W. Moore, Non-Abelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jonathan J. Heckman
    • 1
  • David R. Morrison
    • 2
    • 3
  • Tom Rudelius
    • 4
  • Cumrun Vafa
    • 4
  1. 1.Department of PhysicsUniversity of North CarolinaChapel HillUnited States
  2. 2.Department of MathematicsUniversity of CaliforniaSanta BarbaraUnited States
  3. 3.Department of PhysicsUniversity of CaliforniaSanta BarbaraUnited States
  4. 4.Jefferson Physical LaboratoryHarvard UniversityCambridgeUnited States

Personalised recommendations