Journal of High Energy Physics

, 2015:46 | Cite as

Large N non-perturbative effects in \( \mathcal{N}=4 \) superconformal Chern-Simons theories

  • Yasuyuki Hatsuda
  • Masazumi HondaEmail author
  • Kazumi Okuyama
Open Access
Regular Article - Theoretical Physics


We investigate the large N instanton effects of partition functions in a class of \( \mathcal{N}=4 \) circular quiver Chern-Simons theories on a three-sphere. Our analysis is based on the supersymmetry localization and the Fermi-gas formalism. The resulting matrix model can be regarded as a two-parameter deformation of the ABJM matrix model, and has richer non-perturbative structures. Based on a systematic semi-classical analysis, we find analytic expressions of membrane instanton corrections. We also exactly compute the partition function for various cases and find some exact forms of worldsheet instanton corrections, which appear as quantum mechanical non-perturbative corrections in the Fermi-gas system.


AdS-CFT Correspondence Nonperturbative Effects Topological Strings M-Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS 4 × CP 3, JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi Gas Approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Honda and K. Okuyama, Exact results on ABJ theory and the refined topological string, JHEP 08 (2014) 148 [arXiv:1405.3653] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    S. Matsumoto and S. Moriyama, ABJ Fractional Brane from ABJM Wilson Loop, JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Codesido, A. Grassi and M. Mariño, Exact results in \( \mathcal{N}=8 \) Chern-Simons-matter theories and quantum geometry, JHEP 07 (2015) 011 [arXiv:1409.1799] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  16. [16]
    A. Grassi, Y. Hatsuda and M. Mariño, Quantization conditions and functional equations in ABJ(M) theories, arXiv:1410.7658 [INSPIRE].
  17. [17]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact Results on the ABJM Fermi Gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Putrov and M. Yamazaki, Exact ABJM Partition Function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson Loops in Arbitrary Representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Grassi, J. Kallen and M. Mariño, The topological open string wavefunction, Commun. Math. Phys. 338 (2015) 533 [arXiv:1304.6097] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    M. Honda and S. Moriyama, Instanton Effects in Orbifold ABJM Theory, JHEP 08 (2014) 091 [arXiv:1404.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    K. Hosomichi, A review on SUSY gauge theories on S 3, arXiv:1412.7128 [INSPIRE].
  26. [26]
    A. Grassi and M. Mariño, M-theoretic matrix models, JHEP 02 (2015) 115 [arXiv:1403.4276] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  27. [27]
    M. Mezei and S.S. Pufu, Three-sphere free energy for classical gauge groups, JHEP 02 (2014) 037 [arXiv:1312.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Hatsuda and K. Okuyama, Probing non-perturbative effects in M-theory, JHEP 10 (2014) 158 [arXiv:1407.3786] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].
  30. [30]
    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets, JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. [37]
    S. Moriyama and T. Nosaka, Partition Functions of Superconformal Chern-Simons Theories from Fermi Gas Approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S. Moriyama and T. Nosaka, Exact Instanton Expansion of Superconformal Chern-Simons Theories from Topological Strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  40. [40]
    H. Awata, S. Hirano and M. Shigemori, The Partition Function of ABJ Theory, Prog. Theor. Exp. Phys. (2013) 053B04 [arXiv:1212.2966] [INSPIRE].
  41. [41]
    M. Honda, Direct derivation ofmirrorABJ partition function, JHEP 12 (2013) 046 [arXiv:1310.3126] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Y. Hatsuda, Spectral zeta function and non-perturbative effects in ABJM Fermi-gas, arXiv:1503.07883 [INSPIRE].
  43. [43]
    M. Mariño, Localization at large N in Chern-Simons-matter theories, to appear.Google Scholar
  44. [44]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.B. Zamolodchikov, Painleve III and 2 − D polymers, Nucl. Phys. B 432 (1994) 427 [hep-th/9409108] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, arXiv:1308.6485 [INSPIRE].
  48. [48]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological Strings from Quantum Mechanics, arXiv:1410.3382 [INSPIRE].
  49. [49]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A One-Loop Test of Quantum Supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    Y. Imamura, Monopole operators in N = 4 Chern-Simons theories and wrapped M2-branes, Prog. Theor. Phys. 121 (2009) 1173 [arXiv:0902.4173] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].zbMATHADSGoogle Scholar
  54. [54]
  55. [55]
    K. Okuyama, A Note on the Partition Function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, math/9602214.
  57. [57]
    M. Nishizawa and K. Ueno, Integral soluitons of q-difference equations of the hypergeometric type with |q| = 1, q-alg/9612014.
  58. [58]
    M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M - and [p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    M.-x. Huang, A. Klemm, J. Reuter and M. Schiereck, Quantum geometry of del Pezzo surfaces in the Nekrasov-Shatashvili limit, JHEP 02 (2015) 031 [arXiv:1401.4723] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  61. [61]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].
  62. [62]
    V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287 (2009) 117 [arXiv:0709.1453] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  63. [63]
    R. Kashaev, M. Mariño and S. Zakany, Matrix models from operators and topological strings, 2, arXiv:1505.02243 [INSPIRE].
  64. [64]
    B. Eynard and C. Kristjansen, More on the exact solution of the O(n) model on a random lattice and an investigation of the case |n| > 2, Nucl. Phys. B 466 (1996) 463 [hep-th/9512052] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    L.D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249 [hep-th/9504111] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Yasuyuki Hatsuda
    • 1
  • Masazumi Honda
    • 2
    Email author
  • Kazumi Okuyama
    • 3
  1. 1.DESY Theory Group, DESY HamburgHamburgGermany
  2. 2.Harish-Chandra Research InstituteJhusiIndia
  3. 3.Department of PhysicsShinshu UniversityMatsumotoJapan

Personalised recommendations