Advertisement

Journal of High Energy Physics

, 2015:38 | Cite as

The rare decay H in perturbative QCD

  • T. Gehrmann
  • S. Guns
  • D. Kara
Open Access
Regular Article - Theoretical Physics

Abstract

The rare Higgs boson decay H is forbidden at tree-level. In the Standard Model, it is loop-mediated through a W boson or a heavy quark. We analytically compute the QCD correction to the heavy quark loop, confirming earlier purely numerical results, that were obtained for on-shell renormalization. The small quark mass expansion of the decay matrix element contains only single-logarithmic contributions at each perturbative order, which is in contrast to the double logarithms observed in Hγγ. We investigate the numerical interplay of bottom and top quark contributions, and the dependence of the result on the renormalization scheme.

Keywords

QCD Phenomenology Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R.N. Cahn, M.S. Chanowitz and N. Fleishon, Higgs particle production by Z, Phys. Lett. B 82 (1979) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Bergstrom and G. Hulth, Induced Higgs couplings to neutral bosons in e + e collisions, Nucl. Phys. B 259 (1985) 137 [Erratum ibid. B 276 (1986) 744] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].
  7. [7]
    CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].
  9. [9]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE].
  10. [10]
    G. Passarino, Higgs boson production and decay: Dalitz sector, Phys. Lett. B 727 (2013) 424 [arXiv:1308.0422] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Spira, A. Djouadi and P.M. Zerwas, QCD corrections to the HZγ coupling, Phys. Lett. B 276 (1992) 350 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-boson branching ratios with uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C.R. Schmidt, \( H\to ggg\left(gq\overline{q}\right) \) at two loops in the large M t limit, Phys. Lett. B 413 (1997) 391 [hep-ph/9707448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  24. [24]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  25. [25]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
  30. [30]
    R. Lewis, Computer algebra system Fermat webpage, http://www.bway.net/~lewis.
  31. [31]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  33. [33]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q}\to VV \) : the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Weihs, Dark Higgs studies and diboson production at the Large Hadron Collider, Dissertation, Universität Zürich, Zürich Switzerland (2013).
  42. [42]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The complete two-loop integrated jet thrust distribution in soft-collinear effective theory, JHEP 03 (2014) 139 [arXiv:1309.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, arXiv:1502.06595 [INSPIRE].
  45. [45]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: the vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].
  47. [47]
    K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Jamin and A. Pich, Bottom quark mass and α s from the upsilon system, Nucl. Phys. B 507 (1997) 334 [hep-ph/9702276] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R. Akhoury, H. Wang and O.I. Yakovlev, On the resummation of large QCD logarithms in Higgsγγ decay, Phys. Rev. D 64 (2001) 113008 [hep-ph/0102105] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  51. [51]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  53. [53]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000)43 [hep-ph/0004189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Next-to-leading order QCD corrections to the decay width H, JHEP 08 (2015) 108 [arXiv:1505.00567] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations