Journal of High Energy Physics

, 2015:33 | Cite as

Conductivity and entanglement entropy of high dimensional holographic superconductors

  • Antonio M. García-García
  • Aurelio Romero-Bermúdez
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the dependence of the conductivity and the entanglement entropy on the space-time dimensionality d in two holographic superconductors: one dual to a quantum critical point with spontaneous symmetry breaking, and the other modeled by a charged scalar that condenses at a sufficiently low temperature in the presence of a Maxwell field. In both cases the gravity background is asymptotically Anti de Sitter (AdS). In the large d limit we obtain explicit analytical results for the conductivity at zero temperature and the entanglement entropy by a 1/d expansion. We show that the entanglement entropy is always smaller in the broken phase. As dimensionality increases, the entanglement entropy decreases, the coherence peak in the conductivity becomes narrower and the ratio between the energy gap and the critical temperature decreases. These results suggest that the condensate interactions become weaker in high spatial dimensions.

Keywords

Black Holes Holography and condensed matter physics (AdS/CMT) AdSCFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Metzner and D. Vollhardt, Correlated lattice fermions in d = ∞ dimensions, Phys. Rev. Lett. 62 (1989) 324.ADSCrossRefGoogle Scholar
  2. [2]
    A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45 (1992) 6479.ADSCrossRefGoogle Scholar
  3. [3]
    M. Jarrell, Hubbard model in infinite dimensions: A quantum monte carlo study, Phys. Rev. Lett. 69 (1992) 168.ADSCrossRefGoogle Scholar
  4. [4]
    J.K. Freericks and D.J. Scalapino, Weak-coupling expansions for the attractive Holstein and Hubbard models, Phys. Rev. B 49 (1994) 6368 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Ciuchi, F. De Pasquale, C. Masciovecchio and D. Feinberg, Superconductivity and density waves in high dimensions, Europhys. Lett. 24 (1993) 575.ADSCrossRefGoogle Scholar
  6. [6]
    M.E. Fisher and D.S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices andhigh-densityexpansions, Phys. Rev. 133 (1964) A224.ADSCrossRefMATHGoogle Scholar
  7. [7]
    A. Schiller and K. Ingersent, Systematic 1/d corrections to the infinite-dimensional limit of correlated lattice electron models, Phys. Rev. Lett. 75 (1995) 113.ADSCrossRefGoogle Scholar
  8. [8]
    A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68 (1996) 13 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D.S. Gaunt, M.F. Sykes and H. Ruskin, Percolation processes in d-dimensions, J. Phys. A 9 (1976) 1899.ADSGoogle Scholar
  10. [10]
    R. Abou-Chacra, D. Thouless and P. Anderson, A selfconsistent theory of localization, J. Phys. C 6 (1973) 1734.ADSGoogle Scholar
  11. [11]
    A. M. Garcia-Garcia and E. Cuevas, Dimensional dependence of the metal-insulator transition, Phys. Rev. B 75 (2007) 174203.ADSCrossRefGoogle Scholar
  12. [12]
    A. Strominger, The Inverse Dimensional Expansion in Quantum Gravity, Phys. Rev. D 24 (1981) 3082 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    N.E.J. Bjerrum-Bohr, Quantum gravity at a large number of dimensions, Nucl. Phys. B 684 (2004) 209 [hep-th/0310263] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    R. Emparan and K. Tanabe, Holographic superconductivity in the large D expansion, JHEP 01 (2014) 145 [arXiv:1312.1108] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, Phys. Rev. D 89 (2014) 064028 [arXiv:1401.1957] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].MathSciNetMATHGoogle Scholar
  25. [25]
    T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemissionexperimentson holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Basu, Low temperature properties of holographic condensates, JHEP 03 (2011) 142 [arXiv:1101.0215] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    [30] D.-f. Zeng and K. Zhao, (n + 1)-Dimensional Gravity Duals to Quantum Criticalities with Spontaneous Symmetry Breaking, Commun. Theor. Phys. 60 (2013) 458 [arXiv:1309.7594] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    K.-Y. Kim, J.P. Shock and J. Tarrio, The open string membrane paradigm with external electromagnetic fields, JHEP 06 (2011) 017 [arXiv:1103.4581] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 01 (2014) 080 [arXiv:1308.2084] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R.-G. Cai, S. He, L. Li and Y.-L. Zhang, Holographic Entanglement Entropy in Insulator/Superconductor Transition, JHEP 07 (2012) 088 [arXiv:1203.6620] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Albash and C.V. Johnson, Holographic Studies of Entanglement Entropy in Superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Peng and Q. Pan, Holographic entanglement entropy in general holographic superconductor models, JHEP 06 (2014) 011 [arXiv:1404.1659] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Peng and Y. Liu, A general holographic metal/superconductor phase transition model, JHEP 02 (2015) 082 [arXiv:1410.7234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    X.-M. Kuang, E. Papantonopoulos and B. Wang, Entanglement Entropy as a Probe of the Proximity Effect in Holographic Superconductors, JHEP 05 (2014) 130 [arXiv:1401.5720] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Albash and C.V. Johnson, Holographic Entanglement Entropy and Renormalization Group Flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetMATHGoogle Scholar
  44. [44]
    C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    J. Alsup, G. Siopsis and J. Therrien, Hair on near-extremal Reissner-Nordstrom AdS black holes, Phys. Rev. D 86 (2012) 025002 [arXiv:1110.3342] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Siopsis and J. Therrien, Analytic Calculation of Properties of Holographic Superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    Q. Pan, J. Jing, B. Wang and S. Chen, Analytical study on holographic superconductors with backreactions, JHEP 06 (2012) 087 [arXiv:1205.3543] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Antonio M. García-García
    • 1
  • Aurelio Romero-Bermúdez
    • 1
  1. 1.TCM group, Cavendish Laboratory, University of CambridgeCambridgeUnited Kingdom

Personalised recommendations