Advertisement

Journal of High Energy Physics

, 2015:18 | Cite as

Anomalous triple gauge couplings from B-meson and kaon observables

  • Christoph BobethEmail author
  • Ulrich Haisch
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the three CP-conserving dimension-6 operators that encode the leading new-physics effects in the triple gauge couplings. The contributions to the standardmodel electromagnetic dipole and semi-leptonic vector and axial-vector interactions that arise from the insertions of these operators are calculated. We show that radiative and rare B-meson decays provide, under certain assumptions, constraints on two out of the three anomalous couplings that are competitive with the restrictions obtained from LEP II, Tevatron and LHC data. The constraints arising from the \( Z\to b\overline{b} \) electroweak pseudo observables, \( K\to \pi v\overline{v} \) and ϵ /ϵ are also studied.

Keywords

Beyond Standard Model Rare Decays B-Physics Kaon Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  2. [2]
    CDF collaboration, T. Aaltonen et al., Measurement of the W + W production cross section and search for anomalous W W γ and W W Z couplings in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 104 (2010) 201801 [arXiv:0912.4500] [INSPIRE].
  3. [3]
    CDF collaboration, T. Aaltonen et al., Measurement of the W Z cross section and triple gauge couplings in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 86 (2012) 031104 [arXiv:1202.6629] [INSPIRE].
  4. [4]
    D0 collaboration, V.M. Abazov et al., Limits on anomalous trilinear gauge boson couplings from W W , W Z and W γ production in pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 718 (2012) 451 [arXiv:1208.5458] [INSPIRE].
  5. [5]
    DELPHI, OPAL, LEP Electroweak, ALEPH, L3 collaboration, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  6. [6]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Dumont, S. Fichet and G. von Gersdorff, A bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous W W γ and W W Z couplings, Eur. Phys. J. C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].
  9. [9]
    CMS collaboration, Measurement of the W γ and Zγ inclusive cross sections in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous triple gauge boson couplings, Phys. Rev. D 89 (2014) 092005 [arXiv:1308.6832] [INSPIRE].
  10. [10]
    ATLAS collaboration, Measurement of the W W + W Z cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum and two jets with the ATLAS detector at \( \sqrt{s}=7 \) TeV, JHEP 01 (2015) 049 [arXiv:1410.7238] [INSPIRE].
  11. [11]
    J. Ellis, V. Sanz and T. You, The effective standard model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.P. Chia, Radiative decay of the bottom quark and the W W γ coupling, Phys. Lett. B 240 (1990) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K.A. Peterson, Effects of anomalous W W γ couplings on bsγ and b + μ , Phys. Lett. B 282 (1992) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Numata, The constraints of nonstandard W W γ couplings from FCNC processes, Z. Phys. C 52 (1991) 691 [INSPIRE].ADSGoogle Scholar
  16. [16]
    T.G. Rizzo, Constraints on anomalous gauge boson couplings from bsγ, Phys. Lett. B 315 (1993) 471 [hep-ph/9304263] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X.-G. He, Anomalous W W Z couplings and K(L) → μ + μ , Phys. Lett. B 319 (1993) 327 [hep-ph/9306254] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Baillie, Observing b + μ decays at hadron colliders, Z. Phys. C 61 (1994) 667 [hep-ph/9307369] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Dawson and G. Valencia, Signals for parity violation in the electroweak symmetry breaking sector, Phys. Rev. D 49 (1994) 2188 [hep-ph/9308248] [INSPIRE].ADSGoogle Scholar
  20. [20]
    X.-G. He and B. McKellar, Constraints on the anomalous W W γ couplings from bsγ, Phys. Lett. B 320 (1994) 165 [hep-ph/9309228] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    X.-G. He and B.H.J. McKellar, ϵ /ϵ and anomalous gauge boson couplings, Phys. Rev. D 51 (1995) 6484 [hep-ph/9405288] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Alam, S. Dawson and R. Szalapski, Low-energy constraints on new physics revisited, Phys. Rev. D 57 (1998) 1577 [hep-ph/9706542] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Burdman, Triple gauge boson couplings in rare B and K decays, Phys. Rev. D 59 (1999) 035001 [hep-ph/9806360] [INSPIRE].ADSGoogle Scholar
  24. [24]
    X.-G. He, Contribution to ϵ /ϵ from anomalous gauge couplings, Phys. Lett. B 460 (1999) 405 [hep-ph/9903242] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous \( t\overline{t}Z \) interactions with rare meson decays, JHEP 02 (2015) 141 [arXiv:1408.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson \( t\overline{t}+Z \) production at the LHC, JHEP 07 (2014) 091 [arXiv:1404.1005] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Freitas and U. Haisch, \( \overline{B}\to {X}_s\gamma \) in two universal extra dimensions, Phys. Rev. D 77 (2008) 093008 [arXiv:0801.4346] [INSPIRE].ADSGoogle Scholar
  33. [33]
    B. Grzadkowski and M. Misiak, Anomalous W tb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
  34. [34]
    A.S. Kronfeld et al., Project X: physics opportunities, arXiv:1306.5009.
  35. [35]
    U. Haisch and A. Weiler, Determining the sign of the Z penguin amplitude, Phys. Rev. D76 (2007) 074027 [arXiv:0706.2054] [INSPIRE].ADSGoogle Scholar
  36. [36]
    U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, The (Q7, Q1,2) contribution to \( \overline{B}\to {X}_s\gamma \) at O(a s2), JHEP 04 (2015) 168 [arXiv:1503.01791] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  40. [40]
    C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, B s,d → ℓ+ in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to B sμ + μ , JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to B s,d → ℓ+, Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].ADSGoogle Scholar
  43. [43]
    LHCb, CMS collaboration, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  44. [44]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Guadagnoli and G. Isidori, B(B sμ + μ ) as an electroweak precision test, Phys. Lett. B 724 (2013) 63 [arXiv:1302.3909] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    P. Gambino, U. Haisch and M. Misiak, Determining the sign of the bsγ amplitude, Phys. Rev. Lett. 94 (2005) 061803 [hep-ph/0410155] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [Erratum ibid. C 74 (2014) 3179] [arXiv:1310.2478] [INSPIRE].
  48. [48]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC Run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    LHCb collaboration, Test of lepton universality using B +K ++ decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  50. [50]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, The rare decay \( {\mathrm{K}}^{+}\to {\pi}^{+}\nu \overline{n}u \) at the next-to-next-to-leading order in QCD, Phys. Rev. Lett. 95 (2005) 261805 [hep-ph/0508165] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to \( {\mathrm{K}}^{+}\to {\pi}^{+}\nu \overline{n}u \) at next-to-next-to-leading order,JHEP 11(2006) 002 [Erratum ibid. 1211 (2012) 167] [hep-ph/0603079] [INSPIRE].
  52. [52]
    J. Brod and M. Gorbahn, Electroweak corrections to the charm quark contribution to \( {\mathrm{K}}^{+}\to {\pi}^{+}\nu \overline{\nu} \), Phys. Rev. D 78(2008) 034006[arXiv:0805.4119] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( \mathrm{K}\to \pi \nu \overline{n}u \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  54. [54]
    NA62 collaboration, http://na62.web.cern.ch/na62.
  55. [55]
    KOTO collaboration, http://koto.kek.jp.
  56. [56]
  57. [57]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    A.J. Buras, F. De Fazio and J. Girrbach, ΔI = 1/2 rule, ϵ /ϵ and \( \mathrm{K}\to \pi \nu \overline{\nu} \) in Z (Z) and G models with FCNC quark couplings, Eur. Phys. J. C 74 (2014) 2950 [arXiv:1404.3824] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Blum et al., Lattice determination of the K → (ππ)I=2 decay amplitude A 2, Phys. Rev. D 86 (2012) 074513 [arXiv:1206.5142] [INSPIRE].ADSGoogle Scholar
  60. [60]
    T. Blum et al., K → ππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].ADSGoogle Scholar
  61. [61]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Technische Universität München, Institute for Advanced StudyGarchingGermany
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  3. 3.CERN, Theory DivisionGeneva 23Switzerland

Personalised recommendations