Journal of High Energy Physics

, 2014:174 | Cite as

The \( Hb\overline{b} \) form factor to three loops in QCD

  • Thomas Gehrmann
  • Dominik Kara
Open Access


We compute the three-loop QCD corrections to the vertex function for the Yukawa coupling of a Higgs boson to a pair of bottom quarks in the limit of vanishing quark masses. This QCD form factor is a crucial ingredient to third-order QCD corrections for the production of Higgs bosons in bottom quark fusion, and for the fully differential decay rate of Higgs bosons to bottom quarks. The infrared pole structure of the form factors agrees with the prediction from infrared factorization in QCD.


QCD Phenomenology Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wℓνℓν and HZZ →4ℓ decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    S. Bühler, F. Herzog, A. Lazopoulos and R. Müller, The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO, JHEP 07 (2012) 115 [arXiv:1204.4415] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    G. Ferrera, M. Grazzini and F. Tramontano, Higher-order QCD effects for associated WH production and decay at the LHC, JHEP 04 (2014) 039 [arXiv:1312.1669] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    F. Campanario, T.M. Figy, S. Plätzer and M. Sjödahl, Electroweak Higgs Boson Plus Three Jet Production at Next-to-Leading-Order QCD, Phys. Rev. Lett. 111 (2013) 211802 [arXiv:1308.2932] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO QCD corrections to ttH production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α s4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(α s4), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, arXiv:1407.4747 [INSPIRE].
  18. [18]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: transverse momentum distribution at NNLO+NNLL, arXiv:1403.7196 [INSPIRE].
  22. [22]
    R.V. Harlander, K.J. Ozeren and M. Wiesemann, Higgs plus jet production in bottom quark annihilation at next-to-leading order, Phys. Lett. B 693 (2010) 269 [arXiv:1007.5411] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    R. Harlander and M. Wiesemann, Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order, JHEP 04 (2012) 066 [arXiv:1111.2182] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, P. Mastrolia and E. Remiddi, Decays of scalar and pseudoscalar Higgs bosons into fermions: two-loop QCD corrections to the Higgs-quark-antiquark amplitude, Phys. Rev. D 72 (2005) 096002 [hep-ph/0508254] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    T. Ahmed, M. Mahakhud, P. Mathews, N. Rana and V. Ravindran, Two-loop QCD corrections to Higgsb + \( \overline{b} \) + g amplitude, JHEP 08 (2014) 075 [arXiv:1405.2324] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs and Drell-Yan production at threshold: the one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Höschele, J. Hoff and T. Ueda, Adequate bases of phase space master integrals for ggh at NNLO and beyond, JHEP 09 (2014) 116 [arXiv:1407.4049] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan production at threshold in N 3 LO QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Threshold resummation at N 3 LL accuracy and soft-virtual cross sections at N 3 LO, arXiv:1405.4827 [INSPIRE].
  41. [41]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to O(ϵ 2), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  45. [45]
    D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    D.R.T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz. 41 (1979) 26 [INSPIRE].Google Scholar
  50. [50]
    O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    K.G. Chetyrkin, Quark mass anomalous dimension to O(α s4), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  57. [57]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  59. [59]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  63. [63]
    A. von Manteuffel and C. Studerus, Reduze 2Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
  64. [64]
    T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form-factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form-factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-Propagator Master Integrals for Massless Three-Loop Form Factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic Results for Massless Three-Loop Form Factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  68. [68]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126] [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations