Advertisement

Journal of High Energy Physics

, 2014:171 | Cite as

Partially composite dark matter

  • Masaki Asano
  • Ryuichiro Kitano
Open Access
Article

Abstract

In a class of theories where the Higgs field emerges as a pseudo Nambu-Goldstone boson, it is often assumed that interactions to generate the top Yukawa coupling provide the Higgs potential as well. Such a scenario generically requires a little cancellation in the leading contribution to the Higgs potential, and the electroweak scale is generated by the balance between the leading and the subleading contributions. We, instead, consider the possibility that the contribution from the dark matter particle balances against that from the top quark. The thermal relic of the new particle explains the abundance of dark matter in a consistent region of the parameter space, and the direct detection is found to be promising.

Keywords

Technicolor and Composite Models Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012, CERN, Geneva Switzerland (2013).
  4. [4]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).
  5. [5]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H. Murayama and J. Shu, Topological dark matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A. Joseph and S.G. Rajeev, Topological dark matter in the little Higgs models, Phys. Rev. D 80 (2009) 074009 [arXiv:0905.2772] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Gillioz, A. von Manteuffel, P. Schwaller and D. Wyler, The little skyrmion: new dark matter for little Higgs models, JHEP 03 (2011) 048 [arXiv:1012.5288] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M. Gillioz, Dangerous skyrmions in little Higgs models, JHEP 02 (2012) 121 [Erratum ibid. 03 (2013) 123] [arXiv:1111.2047] [INSPIRE].
  21. [21]
    J. Ellis, M. Karliner and M. Praszalowicz, Generalized skyrmions in QCD and the electroweak sector, JHEP 03 (2013) 163 [arXiv:1209.6430] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Pomarol and A. Wulzer, Stable skyrmions from extra dimensions, JHEP 03 (2008) 051 [arXiv:0712.3276] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    D. Poland and J. Thaler, The dark top, JHEP 11 (2008) 083 [arXiv:0808.1290] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    C. Kouvaris, Dark Majorana particles from the minimal walking technicolor, Phys. Rev. D 76 (2007) 015011 [hep-ph/0703266] [INSPIRE].
  27. [27]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model from an extra dimension, JHEP 07 (2013) 058 [arXiv:1303.3062] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    L. Vecchi, The natural composite Higgs, arXiv:1304.4579 [INSPIRE].
  40. [40]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    L. Vecchi, A heavyneutralinoin warped extra dimensions, Phys. Rev. D 90 (2014) 025017 [arXiv:1310.7862] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    M.A. Fedderke, J.-Y. Chen, E.W. Kolb and L.-T. Wang, The fermionic dark matter Higgs portal: an effective field theory approach, JHEP 08 (2014) 122 [arXiv:1404.2283] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
  45. [45]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A classification of dark matter candidates with primarily spin-dependent interactions with matter, arXiv:1003.1912 [INSPIRE].
  46. [46]
    JLQCD collaboration, H. Ohki et al., Nucleon strange quark content from N f = 2 + 1 lattice QCD with exact chiral symmetry, Phys. Rev. D 87 (2013) 034509 [arXiv:1208.4185] [INSPIRE].ADSGoogle Scholar
  47. [47]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    LUX collaboration, M. Szydagis et al., A detailed look at the first results from the Large Underground Xenon (LUX) dark matter experiment, arXiv:1402.3731 [INSPIRE].
  51. [51]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    M.A. Fedderke, E.W. Kolb, T. Lin and L.-T. Wang, Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons, JCAP 01 (2014) 001 [arXiv:1310.6047] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].
  54. [54]
    CMS collaboration, Search for an invisible Higgs boson, CMS-PAS-HIG-13-013, CERN, Geneva Switzerland (2013).
  55. [55]
    CMS collaboration, Search for invisible Higgs produced in association with a Z boson, CMS-PAS-HIG-13-018, CERN, Geneva Switzerland (2013).
  56. [56]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2014-009, CERN, Geneva Switzerland (2014).
  58. [58]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Bhattacharya et al., Prospects for a heavy vector-like charge 2/3 quark T search at the LHC with \( \sqrt{s} \) = 14 TeV and 33 TeV.A Snowmass 2013 whitepaper”, arXiv:1309.0026 [INSPIRE].
  60. [60]
    Top Quark Working Group collaboration, K. Agashe et al., Working group report: top quark, arXiv:1311.2028 [INSPIRE].
  61. [61]
    H.-C. Cheng, B.A. Dobrescu and J. Gu, Higgs mass from compositeness at a multi-TeV scale, JHEP 08 (2014) 095 [arXiv:1311.5928] [INSPIRE].Google Scholar
  62. [62]
    H.S. Fukano, M. Kurachi, S. Matsuzaki and K. Yamawaki, Higgs as a top-mode pseudo, arXiv:1311.6629 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Physikalisches Institut and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Theory Center, KEKTsukubaJapan
  3. 3.Department of Particle and Nuclear PhysicsThe Graduate University for Advanced Studies (Sokendai)TsukubaJapan

Personalised recommendations