Advertisement

Journal of High Energy Physics

, 2014:162 | Cite as

A second look at gauged supergravities from fluxes in M-theory

  • Jean-Pierre Derendinger
  • Adolfo GuarinoEmail author
Open Access
Article

Abstract

We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with \( \mathcal{N} \) = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G 2 holonomy at \( \mathcal{N} \) = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.

Keywords

Flux compactifications Extended Supersymmetry M-Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    G. Villadoro and F. Zwirner, Beyond Twisted Tori, Phys. Lett. B 652 (2007) 118 [arXiv:0706.3049] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    G. Dall’Agata, G. Villadoro and F. Zwirner, Type-IIA flux compactifications and N = 4 gauged supergravities, JHEP 08 (2009) 018 [arXiv:0906.0370] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    L.J. Romans, Massive N=2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    T. House and A. Micu, M-Theory compactifications on manifolds with G 2 structure, Class. Quant. Grav. 22 (2005) 1709 [hep-th/0412006] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. [12]
    G. Dall’Agata and N. Prezas, Scherk-Schwarz reduction of M-theory on G2-manifolds with fluxes, JHEP 10 (2005) 103 [hep-th/0509052] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    C.M. Hull and R.A. Reid-Edwards, Flux compactifications of M-theory on twisted Tori, JHEP 10 (2006) 086 [hep-th/0603094] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    L. Castellani and L.J. Romans, N = 3 and N = 1 Supersymmetry in a New Class of Solutions for d = 11 Supergravity, Nucl. Phys. B 238 (1984) 683 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    L. Castellani, L.J. Romans and N.P. Warner, A classification of Compactifying Solutions for d=11 Supergravity, Nucl. Phys. B 241 (1984) 429 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    D. Cassani and P. Koerber, Tri-Sasakian consistent reduction, JHEP 01 (2012) 086 [arXiv:1110.5327] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    C.M. Hull, Massive string theories from M-theory and F-theory, JHEP 11 (1998) 027 [hep-th/9811021] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    M. Graña, R. Minasian, H. Triendl and T. Van Riet, Quantization problem in Scherk-Schwarz compactifications, Phys. Rev. D 88 (2013) 085018 [arXiv:1305.0785] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Beasley and E. Witten, A note on fluxes and superpotentials in M-theory compactifications on manifolds of G 2 holonomy, JHEP 07 (2002) 046 [hep-th/0203061] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    S. Gukov, Solitons, superpotentials and calibrations, Nucl. Phys. B 574 (2000) 169 [hep-th/9911011] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    B.S. Acharya and B.J. Spence, Flux, supersymmetry and M-theory on seven manifolds, hep-th/0007213 [INSPIRE].
  26. [26]
    A. Font, A. Guarino and J.M. Moreno, Algebras and non-geometric flux vacua, JHEP 12 (2008) 050 [arXiv:0809.3748] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    T. Friedrich, On types of nonintegrable geometries, math/0205149 [INSPIRE].
  28. [28]
    R.L. Bryant, Some remarks on G 2 -structures, math/0305124 [INSPIRE].
  29. [29]
    J. Held, BPS-like potential for compactifications of heterotic M-theory?, JHEP 10 (2011) 136 [arXiv:1109.1974] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    G. Dall’Agata and S. Ferrara, Gauged supergravity algebras from twisted tori compactifications with fluxes, Nucl. Phys. B 717 (2005) 223 [hep-th/0502066] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    G. Dall’Agata, R. D’Auria and S. Ferrara, Compactifications on twisted tori with fluxes and free differential algebras, Phys. Lett. B 619 (2005) 149 [hep-th/0503122] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    M. de Roo and P. Wagemans, Gauge Matter Coupling in N = 4 Supergravity, Nucl. Phys. B 262 (1985) 644 [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Caviezel et al., On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in String Theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    G. Dibitetto, A. Guarino and D. Roest, Lobotomy of Flux Compactifications, JHEP 05 (2014) 067 [arXiv:1402.4478] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-5A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, (2012).
  43. [43]
    A. Borghese and D. Roest, Metastable supersymmetry breaking in extended supergravity, JHEP 05 (2011) 102 [arXiv:1012.3736] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    G. Dibitetto, Private communication.Google Scholar
  46. [46]
    P.G.O. Freund and M.A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  48. [48]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  49. [49]
    C. Condeescu, I. Florakis, C. Kounnas and D. Lüst, Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFTs, JHEP 10 (2013) 057 [arXiv:1307.0999] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern UniversityBernSwitzerland

Personalised recommendations