Journal of High Energy Physics

, 2014:142 | Cite as

Unruh-DeWitt detector response across a Rindler firewall is finite

  • Jorma LoukoEmail author
Open Access


We investigate a two-level Unruh-DeWitt detector coupled to a massless scalar field or its proper time derivative in (1 + 1)-dimensional Minkowski spacetime, in a quantum state whose correlation structure across the Rindler horizon mimics the stationary aspects of a firewall that Almheiri et al. have argued to ensue in an evaporating black hole spacetime. Within first-order perturbation theory, we show that the detector’s response on falling through the horizon is sudden but finite. The difference from the Minkowski vacuum response is proportional to ω −2 ln(|ω|) for the non-derivative detector and to ln(|ω|) for the derivative-coupling detector, both in the limit of a large energy gap ω and in the limit of adiabatic switching. Adding to the quantum state high Rindler temperature excitations behind the horizon increases the detector’s response proportionally to the temperature; this situation has been suggested to model the energetic curtain proposal of Braunstein et al. We speculate that the (1 + 1)-dimensional derivative-coupling detector may be a good model for a non-derivative detector that crosses a firewall in 3 + 1 dimensions.


Models of Quantum Gravity Black Holes Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  5. [5]
    L. Susskind, Black hole complementarity and the Harlow-Hayden conjecture, arXiv:1301.4505 [INSPIRE].
  6. [6]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    D.N. Page, Excluding black hole firewalls with extreme cosmic censorship, JCAP 06 (2014) 051 [arXiv:1306.0562] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  9. [9]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  10. [10]
    B.S. DeWitt, Quantum gravity: the new synthesis, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), pg. 680.Google Scholar
  11. [11]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982) [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago U.S.A. (1994).zbMATHGoogle Scholar
  13. [13]
    D.J. Raine, D.W. Sciama and P.G. Grove, Does a uniformly accelerated quantum oscillator radiate?, Proc. Roy. Soc. Lond. A 435 (1991) 205.CrossRefADSGoogle Scholar
  14. [14]
    A. Raval, B.L. Hu and J. Anglin, Stochastic theory of accelerated detectors in a quantum field, Phys. Rev. D 53 (1996) 7003 [gr-qc/9510002] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P.C.W. Davies and A.C. Ottewill, Detection of negative energy: 4-dimensional examples, Phys. Rev. D 65 (2002) 104014 [gr-qc/0203003] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    Q. Wang and W.G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress, Phys. Rev. D 89 (2014) 085009 [arXiv:1312.4591] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Martín-Martínez and J. Louko, Particle detectors and the zero mode of a quantum field, Phys. Rev. D 90 (2014) 024015 [arXiv:1404.5621] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B.A. Juárez-Aubry and J. Louko, Onset and decay of the 1+1 Hawking-Unruh effect: what the derivative-coupling detector saw, Class. Quant. Grav., in press [arXiv:1406.2574] [INSPIRE].
  19. [19]
    Y. Décanini and A. Folacci, Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension, Phys. Rev. D 78 (2008) 044025 [gr-qc/0512118] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Satz, Then again, how often does the Unruh-DeWitt detector click if we switch it carefully?, Class. Quant. Grav. 24 (2007) 1719 [gr-qc/0611067] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. [21]
    J. Louko and A. Satz, Transition rate of the Unruh-DeWitt detector in curved spacetime, Class. Quant. Grav. 25 (2008) 055012 [arXiv:0710.5671] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    L. Hodgkinson and J. Louko, How often does the Unruh-DeWitt detector click beyond four dimensions?, J. Math. Phys. 53 (2012) 082301 [arXiv:1109.4377] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    E. Martín-Martínez, M. Montero and M. del Rey, Wavepacket detection with the Unruh-DeWitt model, Phys. Rev. D 87 (2013) 064038 [arXiv:1207.3248] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Á.M. Alhambra, A. Kempf and E. Martín-Martínez, Casimir forces on atoms in optical cavities, Phys. Rev. A 89 (2014) 033835 [arXiv:1311.7619].CrossRefADSGoogle Scholar
  25. [25]
    S.L. Braunstein, private communication (2014).Google Scholar
  26. [26]
    C.J. Fewster, A general worldline quantum inequality, Class. Quant. Grav. 17 (2000) 1897 [gr-qc/9910060] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [27]
    W. Junker and E. Schrohe, Adiabatic vacuum states on general space-time manifolds: definition, construction and physical properties, Ann. Poincaré Phys. Theor. 3 (2002) 1113 [math-ph/0109010] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L. Hörmander, The analysis of linear partial differential operators I (distribution theory and Fourier analysis), 2nd edition, Springer, Berlin Germany (1990).zbMATHGoogle Scholar
  29. [29]
    L. Hörmander, Fourier integral operators. I, Acta Mathematica 127 (1971) 79, reprinted in J. Brüning and V.W. Guillemin eds., Mathematics past and present. Fourier integral operators, Springer, Berlin Germany (1994).Google Scholar
  30. [30]
    B. Reznik, A. Retzker and J. Silman, Violating Bells inequalities in vacuum, Phys. Rev. A 71 (2005) 042104 [quant-ph/0310058].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    S.J. Olson and T.C. Ralph, Entanglement between the future and past in the quantum vacuum, Phys. Rev. Lett. 106 (2011) 110404 [arXiv:1003.0720] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    S.J. Olson and T.C. Ralph, Extraction of timelike entanglement from the quantum vacuum, Phys. Rev. A 85 (2012) 012306 [arXiv:1101.2565] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    A. Almheiri and J. Sully, An uneventful horizon in two dimensions, JHEP 02 (2014) 108 [arXiv:1307.8149] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    M. Hotta, J. Matsumoto and K. Funo, Black hole firewalls require huge energy of measurement, Phys. Rev. D 89 (2014) 124023 [arXiv:1306.5057] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Wong, Asymptotic approximations of integrals, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (2001).CrossRefzbMATHGoogle Scholar
  36. [36]
    NIST Digital Library of Mathematical Functions,, release 1.0.6 (2013).

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamU.K.

Personalised recommendations