Advertisement

Journal of High Energy Physics

, 2014:142 | Cite as

Unruh-DeWitt detector response across a Rindler firewall is finite

  • Jorma LoukoEmail author
Open Access
Article

Abstract

We investigate a two-level Unruh-DeWitt detector coupled to a massless scalar field or its proper time derivative in (1 + 1)-dimensional Minkowski spacetime, in a quantum state whose correlation structure across the Rindler horizon mimics the stationary aspects of a firewall that Almheiri et al. have argued to ensue in an evaporating black hole spacetime. Within first-order perturbation theory, we show that the detector’s response on falling through the horizon is sudden but finite. The difference from the Minkowski vacuum response is proportional to ω −2 ln(|ω|) for the non-derivative detector and to ln(|ω|) for the derivative-coupling detector, both in the limit of a large energy gap ω and in the limit of adiabatic switching. Adding to the quantum state high Rindler temperature excitations behind the horizon increases the detector’s response proportionally to the temperature; this situation has been suggested to model the energetic curtain proposal of Braunstein et al. We speculate that the (1 + 1)-dimensional derivative-coupling detector may be a good model for a non-derivative detector that crosses a firewall in 3 + 1 dimensions.

Keywords

Models of Quantum Gravity Black Holes Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  5. [5]
    L. Susskind, Black hole complementarity and the Harlow-Hayden conjecture, arXiv:1301.4505 [INSPIRE].
  6. [6]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    D.N. Page, Excluding black hole firewalls with extreme cosmic censorship, JCAP 06 (2014) 051 [arXiv:1306.0562] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  9. [9]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  10. [10]
    B.S. DeWitt, Quantum gravity: the new synthesis, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), pg. 680.Google Scholar
  11. [11]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982) [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago U.S.A. (1994).zbMATHGoogle Scholar
  13. [13]
    D.J. Raine, D.W. Sciama and P.G. Grove, Does a uniformly accelerated quantum oscillator radiate?, Proc. Roy. Soc. Lond. A 435 (1991) 205.CrossRefADSGoogle Scholar
  14. [14]
    A. Raval, B.L. Hu and J. Anglin, Stochastic theory of accelerated detectors in a quantum field, Phys. Rev. D 53 (1996) 7003 [gr-qc/9510002] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P.C.W. Davies and A.C. Ottewill, Detection of negative energy: 4-dimensional examples, Phys. Rev. D 65 (2002) 104014 [gr-qc/0203003] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    Q. Wang and W.G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress, Phys. Rev. D 89 (2014) 085009 [arXiv:1312.4591] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Martín-Martínez and J. Louko, Particle detectors and the zero mode of a quantum field, Phys. Rev. D 90 (2014) 024015 [arXiv:1404.5621] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B.A. Juárez-Aubry and J. Louko, Onset and decay of the 1+1 Hawking-Unruh effect: what the derivative-coupling detector saw, Class. Quant. Grav., in press [arXiv:1406.2574] [INSPIRE].
  19. [19]
    Y. Décanini and A. Folacci, Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension, Phys. Rev. D 78 (2008) 044025 [gr-qc/0512118] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Satz, Then again, how often does the Unruh-DeWitt detector click if we switch it carefully?, Class. Quant. Grav. 24 (2007) 1719 [gr-qc/0611067] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. [21]
    J. Louko and A. Satz, Transition rate of the Unruh-DeWitt detector in curved spacetime, Class. Quant. Grav. 25 (2008) 055012 [arXiv:0710.5671] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    L. Hodgkinson and J. Louko, How often does the Unruh-DeWitt detector click beyond four dimensions?, J. Math. Phys. 53 (2012) 082301 [arXiv:1109.4377] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    E. Martín-Martínez, M. Montero and M. del Rey, Wavepacket detection with the Unruh-DeWitt model, Phys. Rev. D 87 (2013) 064038 [arXiv:1207.3248] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Á.M. Alhambra, A. Kempf and E. Martín-Martínez, Casimir forces on atoms in optical cavities, Phys. Rev. A 89 (2014) 033835 [arXiv:1311.7619].CrossRefADSGoogle Scholar
  25. [25]
    S.L. Braunstein, private communication (2014).Google Scholar
  26. [26]
    C.J. Fewster, A general worldline quantum inequality, Class. Quant. Grav. 17 (2000) 1897 [gr-qc/9910060] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [27]
    W. Junker and E. Schrohe, Adiabatic vacuum states on general space-time manifolds: definition, construction and physical properties, Ann. Poincaré Phys. Theor. 3 (2002) 1113 [math-ph/0109010] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L. Hörmander, The analysis of linear partial differential operators I (distribution theory and Fourier analysis), 2nd edition, Springer, Berlin Germany (1990).zbMATHGoogle Scholar
  29. [29]
    L. Hörmander, Fourier integral operators. I, Acta Mathematica 127 (1971) 79, reprinted in J. Brüning and V.W. Guillemin eds., Mathematics past and present. Fourier integral operators, Springer, Berlin Germany (1994).Google Scholar
  30. [30]
    B. Reznik, A. Retzker and J. Silman, Violating Bells inequalities in vacuum, Phys. Rev. A 71 (2005) 042104 [quant-ph/0310058].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    S.J. Olson and T.C. Ralph, Entanglement between the future and past in the quantum vacuum, Phys. Rev. Lett. 106 (2011) 110404 [arXiv:1003.0720] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    S.J. Olson and T.C. Ralph, Extraction of timelike entanglement from the quantum vacuum, Phys. Rev. A 85 (2012) 012306 [arXiv:1101.2565] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    A. Almheiri and J. Sully, An uneventful horizon in two dimensions, JHEP 02 (2014) 108 [arXiv:1307.8149] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    M. Hotta, J. Matsumoto and K. Funo, Black hole firewalls require huge energy of measurement, Phys. Rev. D 89 (2014) 124023 [arXiv:1306.5057] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Wong, Asymptotic approximations of integrals, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (2001).CrossRefzbMATHGoogle Scholar
  36. [36]
    NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, release 1.0.6 (2013).

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamU.K.

Personalised recommendations