Advertisement

Journal of High Energy Physics

, 2014:127 | Cite as

Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

  • The ZEUS collaboration
  • H. Abramowicz
  • I. Abt
  • L. Adamczyk
  • M. Adamus
  • R. Aggarwal
  • S. Antonelli
  • O. Arslan
  • V. Aushev
  • Y. Aushev
  • O. Bachynska
  • A. N. Barakbaev
  • N. Bartosik
  • O. Behnke
  • J. Behr
  • U. Behrens
  • A. Bertolin
  • S. Bhadra
  • I. Bloch
  • V. Bokhonov
  • E. G. Boos
  • K. Borras
  • I. Brock
  • R. Brugnera
  • A. Bruni
  • B. Brzozowska
  • P. J. Bussey
  • A. Caldwell
  • M. Capua
  • C. D. Catterall
  • J. Chwastowski
  • J. Ciborowski
  • R. Ciesielski
  • A. M. Cooper-Sarkar
  • M. Corradi
  • F. Corriveau
  • G. D’Agostini
  • R. K. Dementiev
  • R. C. E. Devenish
  • G. Dolinska
  • V. Drugakov
  • S. Dusini
  • J. Ferrando
  • J. Figiel
  • B. Foster
  • G. Gach
  • A. Garfagnini
  • A. Geiser
  • A. Gizhko
  • L. K. Gladilin
  • O. Gogota
  • Yu. A. Golubkov
  • J. Grebenyuk
  • I. Gregor
  • G. Grzelak
  • O. Gueta
  • M. Guzik
  • W. Hain
  • G. Hartner
  • D. Hochman
  • R. Hori
  • Z. A. Ibrahim
  • Y. Iga
  • M. Ishitsuka
  • A. Iudin
  • F. Januschek
  • I. Kadenko
  • S. Kananov
  • T. Kanno
  • U. Karshon
  • M. Kaur
  • P. Kaur
  • L. A. Khein
  • D. Kisielewska
  • R. Klanner
  • U. Klein
  • N. Kondrashova
  • O. Kononenko
  • Ie. Korol
  • I. A. Korzhavina
  • A. Kotanski
  • U. Kötz
  • N. Kovalchuk
  • H. Kowalski
  • O. Kuprash
  • M. Kuze
  • B. B. Levchenko
  • A. Levy
  • V. Libov
  • S. Limentani
  • M. Lisovyi
  • E. Lobodzinska
  • W. Lohmann
  • B. Löhr
  • E. Lohrmann
  • A. Longhin
  • D. Lontkovskyi
  • O. Yu. Lukina
  • J. Maeda
  • I. Makarenko
  • J. Malka
  • J. F. Martin
  • S. Mergelmeyer
  • F. Mohamad Idris
  • K. Mujkic
  • V. Myronenko
  • K. Nagano
  • A. Nigro
  • T. Nobe
  • D. Notz
  • R. J. Nowak
  • K. Olkiewicz
  • Yu. Onishchuk
  • E. Paul
  • W. Perlanski
  • H. Perrey
  • N. S. Pokrovskiy
  • A. S. Proskuryakov
  • M. Przybycien
  • A. Raval
  • P. Roloff
  • I. Rubinsky
  • M. Ruspa
  • V. Samojlov
  • D. H. Saxon
  • M. Schioppa
  • W. B. Schmidke
  • U. Schneekloth
  • T. Schörner-Sadenius
  • J. Schwartz
  • L. M. Shcheglova
  • R. Shehzadi
  • R. Shevchenko
  • O. Shkola
  • I. Singh
  • I. O. Skillicorn
  • W. Slominski
  • V. Sola
  • A. Solano
  • A. Spiridonov
  • L. Stanco
  • N. Stefaniuk
  • A. Stern
  • T. P. Stewart
  • P. Stopa
  • J. Sztuk-Dambietz
  • D. Szuba
  • J. Szuba
  • E. Tassi
  • T. Temiraliev
  • K. Tokushuku
  • J. Tomaszewska
  • A. Trofymov
  • V. Trusov
  • T. Tsurugai
  • M. Turcato
  • O. Turkot
  • T. Tymieniecka
  • A. Verbytskyi
  • O. Viazlo
  • R. Walczak
  • W. A. T. Wan Abdullah
  • K. Wichmann
  • M. Wing
  • G. Wolf
  • S. Yamada
  • Y. Yamazaki
  • N. Zakharchuk
  • A. F. Żarnecki
  • L. Zawiejski
  • O. Zenaiev
  • B. O. Zhautykov
  • N. Zhmak
  • D. S. Zotkin
Open Access
Article

Abstract

The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb−1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b (m b ) = 4.07 ± 0.14 (fit) − 0.07 + 0.01 (mod.) − 0.00 + 0.05 (param.) − 0.05 + 0.08 (theo.) GeV.

Keywords

Lepton-Nucleon Scattering QCD Jets B physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B.W. Harris and J. Smith, Heavy quark correlations in deep inelastic electroproduction, Nucl. Phys. B 452 (1995) 109 [hep-ph/9503484] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    B.W. Harris and J. Smith, Invariant mass distributions for heavy quark-anti-quark pairs in deep inelastic electroproduction, Phys. Lett. B 353 (1995) 535 [Erratum ibid. B 359 (1995) 423] [hep-ph/9502312] [INSPIRE].
  3. [3]
    E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Complete Os) corrections to heavy flavor structure functions in electroproduction, Nucl. Phys. B 392 (1993) 162 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, O(α s) corrections to heavy flavor inclusive distributions in electroproduction, Nucl. Phys. B 392 (1993) 229 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    H1 collaboration, C. Adloff et al., Inclusive D 0 and D ∗± production in deep inelastic ep scattering at HERA, Z. Phys. C 72 (1996) 593 [hep-ex/9607012] [INSPIRE].ADSGoogle Scholar
  6. [6]
    H1 collaboration, C. Adloff et al., Measurement of D meson cross-sections at HERA and determination of the gluon density in the proton using NLO QCD, Nucl. Phys. B 545 (1999) 21 [hep-ex/9812023] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    H1 collaboration, C. Adloff et al., Measurement of D ∗± meson production and F 2c in deep inelastic scattering at HERA, Phys. Lett. B 528 (2002) 199 [hep-ex/0108039] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    H1 collaboration, A. Aktas et al., Inclusive production of D + , D 0 , D s+ and D ∗+ mesons in deep inelastic scattering at HERA, Eur. Phys. J. C 38 (2005) 447 [hep-ex/0408149] [INSPIRE].ADSGoogle Scholar
  9. [9]
    H1 collaboration, A. Aktas et al., Measurement of \( {F}_2\left(c\overline{c}\right) \) and \( {F}_2\left(b\overline{b}\right) \) at high Q 2 using the H1 vertex detector at HERA, Eur. Phys. J. C 40 (2005) 349 [hep-ex/0411046] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H1 collaboration, A. Aktas et al., Measurement of beauty production at HERA using events with muons and jets, Eur. Phys. J. C 41 (2005) 453 [hep-ex/0502010] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H1 collaboration, A. Aktas et al., Measurement of \( {F}_2^{c\overline{c}} \) and \( {F}_2^{b\overline{b}} \) at low Q 2 and x using the H1 vertex detector at HERA, Eur. Phys. J. C 45 (2006) 23 [hep-ex/0507081] [INSPIRE].ADSGoogle Scholar
  12. [12]
    H1 collaboration, A. Aktas et al., Production of D ∗± mesons with dijets in deep-inelastic scattering at HERA, Eur. Phys. J. C 51 (2007) 271 [hep-ex/0701023] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    H1 collaboration, F.D. Aaron et al., Measurement of the D ∗± meson production cross section and \( {F}_2^{c\overline{c}} \) , at high Q 2 , in ep scattering at HERA, Phys. Lett. B 686 (2010) 91 [arXiv:0911.3989] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    H1 collaboration, F.D. Aaron et al., Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA, Eur. Phys. J. C 65 (2010) 89 [arXiv:0907.2643] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    H1 collaboration, F.D. Aaron et al., Measurement of charm and beauty jets in deep inelastic scattering at HERA, Eur. Phys. J. C 71 (2011) 1509 [arXiv:1008.1731] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    H1 collaboration, F.D. Aaron et al., Measurement of D ∗± meson production and determination of \( {F}_2^{c\overline{c}} \) at low Q 2 in deep-inelastic scattering at HERA, Eur. Phys. J. C 71 (2011) 1769 [Erratum ibid. C 72 (2012) 2252] [arXiv:1106.1028] [INSPIRE].
  17. [17]
    ZEUS collaboration, J. Breitweg et al., D production in deep inelastic scattering at HERA, Phys. Lett. B 407 (1997) 402 [hep-ex/9706009] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    ZEUS collaboration, J. Breitweg et al., Measurement of D ∗± production and the charm contribution to F 2 in deep inelastic scattering at HERA, Eur. Phys. J. C 12 (2000) 35 [hep-ex/9908012] [INSPIRE].ADSGoogle Scholar
  19. [19]
    ZEUS collaboration, S. Chekanov et al., Measurement of D ∗± production in deep inelastic e ± p scattering at HERA, Phys. Rev. D 69 (2004) 012004 [hep-ex/0308068] [INSPIRE].ADSGoogle Scholar
  20. [20]
    ZEUS collaboration, S. Chekanov et al., Measurement of beauty production in deep inelastic scattering at HERA, Phys. Lett. B 599 (2004) 173 [hep-ex/0405069] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    ZEUS collaboration, S. Chekanov et al., Measurement of open beauty production at HERA in the D muon final state, Eur. Phys. J. C 50 (2007) 299 [hep-ex/0609050] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    ZEUS collaboration, S. Chekanov et al., Measurement of D ∗± meson production in e ± p scattering at low Q 2, Phys. Lett. B 649 (2007) 111 [hep-ex/0702034] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    ZEUS collaboration, S. Chekanov et al., Measurement of D mesons production in deep inelastic scattering at HERA, JHEP 07 (2007) 074 [arXiv:0704.3562] [INSPIRE].Google Scholar
  24. [24]
    ZEUS collaboration, S. Chekanov et al., Measurement of beauty production from dimuon events at HERA, JHEP 02 (2009) 032 [arXiv:0811.0894] [INSPIRE].Google Scholar
  25. [25]
    ZEUS collaboration, S. Chekanov et al., Measurement of D ± and D 0 production in deep inelastic scattering using a lifetime tag at HERA, Eur. Phys. J. C 63 (2009) 171 [arXiv:0812.3775] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    ZEUS collaboration, S. Chekanov et al., Measurement of charm and beauty production in deep inelastic ep scattering from decays into muons at HERA, Eur. Phys. J. C 65 (2010) 65 [arXiv:0904.3487] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    ZEUS collaboration, H. Abramowicz et al., Measurement of beauty production in DIS and \( {F}_2^{b\overline{b}} \) extraction at ZEUS, Eur. Phys. J. C 69 (2010) 347 [arXiv:1005.3396] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    ZEUS collaboration, H. Abramowicz et al., Measurement of D + and Λ c+ production in deep inelastic scattering at HERA, JHEP 11 (2010) 009 [arXiv:1007.1945] [INSPIRE].ADSGoogle Scholar
  29. [29]
    ZEUS collaboration, H. Abramowicz et al., Measurement of beauty production in deep inelastic scattering at HERA using decays into electrons, Eur. Phys. J. C 71 (2011) 1573 [arXiv:1101.3692] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    ZEUS collaboration, H. Abramowicz et al., Measurement of D ± production in deep inelastic ep scattering with the ZEUS detector at HERA, JHEP 05 (2013) 023 [arXiv:1302.5058] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    ZEUS collaboration, H. Abramowicz et al., Measurement of D ∗± production in deep inelastic scattering at HERA, JHEP 05 (2013) 097 [arXiv:1303.6578] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    H1 Collaboration, ZEUS collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    ZEUS collaboration, The ZEUS detector, Status Report, DESY (1993).
  34. [34]
    N. Harnew et al., Vertex triggering using time difference measurements in the ZEUS central tracking detector, Nucl. Instrum. Meth. A 279 (1989) 290 [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    B. Foster et al., The performance of the ZEUS central tracking detector z-by-timing electronics in a transputer based data acquisition system, Nucl. Phys. Proc. Suppl. B 32 (1993) 181.CrossRefADSGoogle Scholar
  36. [36]
    ZEUS collaboration, B. Foster et al., The design and construction of the ZEUS central tracking detector, Nucl. Instrum. Meth. A 338 (1994) 254 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    ZEUS collaboration, A. Polini et al., The design and performance of the ZEUS Micro Vertex detector, Nucl. Instrum. Meth. A 581 (2007) 656 [arXiv:0708.3011] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    M. Derrick et al., Design and construction of the ZEUS barrel calorimeter, Nucl. Instrum. Meth. A 309 (1991) 77 [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    ZEUS Calorimeter Group, ZEUS collaboration, A. Andresen et al., Construction and beam test of the ZEUS forward and rear calorimeter, Nucl. Instrum. Meth. A 309 (1991) 101 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    A. Caldwell et al., Design and implementation of a high precision readout system for the ZEUS calorimeter, Nucl. Instrum. Meth. A 321 (1992) 356 [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    ZEUS Barrel Calorimeter Group collaboration, A. Bernstein et al., Beam tests of the ZEUS barrel calorimeter, Nucl. Instrum. Meth. A 336 (1993) 23 [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    J. Andruszków et al., First measurement of HERA luminosity by ZEUS lumi monitor, DESY-92-066 (1992).Google Scholar
  43. [43]
    ZEUS collaboration, M. Derrick et al., Measurement of total and partial photon proton cross-sections at 180 GeV center-of-mass energy, Z. Phys. C 63 (1994) 391 [INSPIRE].ADSGoogle Scholar
  44. [44]
    ZEUS Luminosity Group collaboration, J. Andruszkow et al., Luminosity measurement in the ZEUS experiment, Acta Phys. Polon. B 32 (2001) 2025 [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Helbich et al., The spectrometer system for measuring ZEUS luminosity at HERA, Nucl. Instrum. Meth. A 565 (2006) 572 [physics/0512153] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    H. Jung, Hard diffractive scattering in high-energy ep collisions and the Monte Carlo generator RAPGAP, Comput. Phys. Commun. 86 (1995) 147 [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    A. Kwiatkowski, H. Spiesberger and H.J. Mohring, Heracles: an event generator for ep interactions at HERA energies including radiative processes: version 1.0, Comput. Phys. Commun. 69 (1992) 155 [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    G.A. Schuler and H. Spiesberger, Django: the interface for the event generators Heracles and Lepto, in Proceedings of the Workshop on Physics at HERA, W. Buchmüller and G. Ingelman eds., DESY, Hamburg, Germany (1991).Google Scholar
  50. [50]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74 [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].CrossRefMATHADSGoogle Scholar
  53. [53]
    M.G. Bowler, e + e production of heavy quarks in the string model, Z. Phys. C 11 (1981) 169 [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Sjöstrand, L. Lönnblad and S. Mrenna, PYTHIA 6.2: physics and manual, hep-ph/0108264 [INSPIRE].
  55. [55]
    R. Brun et al., Geant3, CERN-DD/EE/84-1 (1987).Google Scholar
  56. [56]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    E. Lohrmann, A summary of charm hadron production fractions, arXiv:1112.3757 [INSPIRE].
  58. [58]
    O. Viazlo, Differential cross sections of charm and beauty production at large momentum transfer with the ZEUS experiment at the HERA collider, Master Thesis, Kyiv University, Kyiv, Ukraine (2012).Google Scholar
  59. [59]
    B.W. Harris and J. Smith, Charm quark and D ∗± cross-sections in deeply inelastic scattering at HERA, Phys. Rev. D 57 (1998) 2806 [hep-ph/9706334] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J. Smith and W.L. van Neerven, QCD corrections to heavy flavor photoproduction and electroproduction, Nucl. Phys. B 374 (1992) 36 [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    ZEUS collaboration, S. Chekanov et al., A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering, Phys. Rev. D 67 (2003) 012007 [hep-ex/0208023] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3, 4 and 5-flavor NNLO parton from deep-inelastic-scattering data and at hadron colliders, Phys. Rev. D 81 (2010) 014032 [arXiv:0908.2766] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  64. [64]
  65. [65]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    W.H. Smith, K. Tokushuku and L.W. Wiggers, The ZEUS trigger system, in Proceedings of Computing in High-Energy Physics (CHEP), Annecy, France, C. Verkerk and W. Wojcik eds., CERN, Geneva, Switzerland (1992) [DESY-92-150B].Google Scholar
  68. [68]
    P. Roloff, Measurement of charm and beauty production in deep inelastic scattering at HERA, Ph.D. Thesis, Hamburg University, Hamburg, Germany (2011) [DESY-THESIS-2011-049].Google Scholar
  69. [69]
    H. Abramowicz, A. Caldwell and R. Sinkus, Neural network based electron identification in the ZEUS calorimeter, Nucl. Instrum. Meth. A 365 (1995) 508 [hep-ex/9505004] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    ZEUS collaboration, J. Breitweg et al., Measurement of the diffractive structure function F 2(D(4)) at HERA, Eur. Phys. J. C 1 (1998) 81 [hep-ex/9709021] [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    G.M. Briskin, Diffractive dissociation in ep deep inelastic scattering, Ph.D. Thesis, Tel Aviv University, Tel Aviv, Israel (1998) [DESY-THESIS-1998-036].Google Scholar
  72. [72]
    S. Bentvelsen, J. Engelen and P. Kooijman, Reconstruction of (x, Q 2) and extraction of structure functions in neutral current scattering at HERA, in Proceedings of the Workshop on Physics at HERA, W. Buchmüller and G. Ingelman eds., DESY, Hamburg Germany (1992).Google Scholar
  73. [73]
    R. Sinkus and T. Voss, Particle identification with neural networks using a rotational invariant moment representation, Nucl. Instrum. Meth. A 391 (1997) 360 [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    F. Jacquet and A. Blondel, Detection of the charged current eventMethod II, in Proceedings of the study for an ep facility for Europe, U. Amaldi ed., DESY, Hamburg Germany (1979) [DESY-79-48].Google Scholar
  75. [75]
    B. Kahle, Measurement of beauty-production in deep inelastic scattering at HERA II, Ph.D. Thesis, Hamburg University, Hamburg, Germany (2005) [DESY-THESIS-06-011].Google Scholar
  76. [76]
    K. Rose, E. Gurewitz and G.C. Fox, Statistical mechanics and phase transitions in clustering, Phys. Rev. Lett. 65 (1990) 945.CrossRefADSGoogle Scholar
  77. [77]
    K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, IEEE Proc. 86 (1998) 2210.CrossRefGoogle Scholar
  78. [78]
    F. Didierjean, G. Duchêne and A. Lopez-Martens, The deterministic annealing filter: A new clustering method for γ-ray tracking algorithms, Nucl. Instrum. Meth. A 615 (2010) 188.CrossRefADSGoogle Scholar
  79. [79]
    V. Libov, Measurement of charm and beauty production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors, Ph.D. Thesis, Hamburg University, Hamburg, Germany (2013) [DESY-THESIS-2013-030].Google Scholar
  80. [80]
    C. Peterson, D. Schlatter, I. Schmitt and P.M. Zerwas, Scaling violations in inclusive e + e annihilation spectra, Phys. Rev. D 27 (1983) 105 [INSPIRE].ADSGoogle Scholar
  81. [81]
    ZEUS collaboration, S. Chekanov et al., Measurement of the charm fragmentation function in D photoproduction at HERA, JHEP 04 (2009) 082 [arXiv:0901.1210] [INSPIRE].Google Scholar
  82. [82]
    OPAL collaboration, G. Abbiendi et al., Inclusive analysis of the b quark fragmentation function in Z decays at LEP, Eur. Phys. J. C 29 (2003) 463 [hep-ex/0210031] [INSPIRE].ADSGoogle Scholar
  83. [83]
    HERA combined results, https://www.desy.de/h1zeus/combined results/.
  84. [84]
    HERA combined results, HERAPDF table, https://www.desy.de/h1zeus/combined results/herapdftable.
  85. [85]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  87. [87]
    R.S. Thorne and W.K. Tung, PQCD formulations with heavy quark masses and global analysis, arXiv:0809.0714 [INSPIRE].
  88. [88]
    P. Jimenez-Delgado and E. Reya, Dynamical NNLO parton distributions, Phys. Rev. D 79 (2009) 074023 [arXiv:0810.4274] [INSPIRE].ADSGoogle Scholar
  89. [89]
    S. Alekhin and S. Moch, Higher order QCD corrections to charged-lepton deep-inelastic scattering and global fits of parton distributions, Phys. Lett. B 672 (2009) 166 [arXiv:0811.1412] [INSPIRE].CrossRefADSGoogle Scholar
  90. [90]
    S. Alekhin, J. Blumlein and S.-O. Moch, Update of the NNLO PDFs in the 3-, 4- and 5-flavour scheme, PoS(DIS 2010)021 [arXiv:1007.3657] [INSPIRE].
  91. [91]
    H1 and ZEUS collaboration, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].CrossRefADSGoogle Scholar
  92. [92]
    S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].CrossRefADSGoogle Scholar
  93. [93]
    S. Alekhin, K. Daum, K. Lipka and S. Moch, Determination of the charm-quark mass in the MS-bar scheme using charm production data from deep inelastic scattering at HERA, Phys. Lett. B 718 (2012) 550 [arXiv:1209.0436] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
  95. [95]
    S. Alekhin and S. Moch, Heavy-quark deep-inelastic scattering with a running mass, Phys. Lett. B 699 (2011) 345 [arXiv:1011.5790] [INSPIRE].CrossRefADSGoogle Scholar
  96. [96]
    S. Alekhin and S.-O. Moch, Running heavy-quark masses in DIS, arXiv:1107.0469 [INSPIRE].
  97. [97]
  98. [98]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) MS and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE].ADSGoogle Scholar
  99. [99]
    K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].CrossRefADSGoogle Scholar
  100. [100]
    K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].CrossRefADSGoogle Scholar
  101. [101]
    Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 1.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • The ZEUS collaboration
  • H. Abramowicz
    • 27
    • 52
  • I. Abt
    • 21
  • L. Adamczyk
    • 8
  • M. Adamus
    • 34
  • R. Aggarwal
    • 4
  • S. Antonelli
    • 2
  • O. Arslan
    • 3
  • V. Aushev
    • 16
    • 17
  • Y. Aushev
    • 17
  • O. Bachynska
    • 10
  • A. N. Barakbaev
    • 15
  • N. Bartosik
    • 10
  • O. Behnke
    • 10
  • J. Behr
    • 10
  • U. Behrens
    • 10
  • A. Bertolin
    • 23
  • S. Bhadra
    • 36
  • I. Bloch
    • 11
  • V. Bokhonov
    • 16
  • E. G. Boos
    • 15
  • K. Borras
    • 10
  • I. Brock
    • 3
  • R. Brugnera
    • 24
  • A. Bruni
    • 1
  • B. Brzozowska
    • 33
  • P. J. Bussey
    • 12
  • A. Caldwell
    • 21
  • M. Capua
    • 5
  • C. D. Catterall
    • 36
  • J. Chwastowski
    • 7
    • 40
  • J. Ciborowski
    • 33
    • 54
  • R. Ciesielski
    • 10
    • 41
  • A. M. Cooper-Sarkar
    • 22
  • M. Corradi
    • 1
  • F. Corriveau
    • 18
  • G. D’Agostini
    • 26
  • R. K. Dementiev
    • 20
  • R. C. E. Devenish
    • 22
  • G. Dolinska
    • 10
  • V. Drugakov
    • 11
  • S. Dusini
    • 23
  • J. Ferrando
    • 12
  • J. Figiel
    • 7
  • B. Foster
    • 13
    • 46
  • G. Gach
    • 8
  • A. Garfagnini
    • 24
  • A. Geiser
    • 10
  • A. Gizhko
    • 10
  • L. K. Gladilin
    • 20
  • O. Gogota
    • 17
  • Yu. A. Golubkov
    • 20
  • J. Grebenyuk
    • 10
  • I. Gregor
    • 10
  • G. Grzelak
    • 33
  • O. Gueta
    • 27
  • M. Guzik
    • 8
  • W. Hain
    • 10
  • G. Hartner
    • 36
  • D. Hochman
    • 35
  • R. Hori
    • 14
  • Z. A. Ibrahim
    • 6
  • Y. Iga
    • 25
  • M. Ishitsuka
    • 28
  • A. Iudin
    • 17
  • F. Januschek
    • 10
  • I. Kadenko
    • 17
  • S. Kananov
    • 27
  • T. Kanno
    • 28
  • U. Karshon
    • 35
  • M. Kaur
    • 4
  • P. Kaur
    • 4
  • L. A. Khein
    • 20
  • D. Kisielewska
    • 8
  • R. Klanner
    • 13
  • U. Klein
    • 10
    • 42
  • N. Kondrashova
    • 17
    • 49
  • O. Kononenko
    • 17
  • Ie. Korol
    • 10
  • I. A. Korzhavina
    • 20
  • A. Kotanski
    • 9
  • U. Kötz
    • 10
  • N. Kovalchuk
    • 17
  • H. Kowalski
    • 10
  • O. Kuprash
    • 10
  • M. Kuze
    • 28
  • B. B. Levchenko
    • 20
  • A. Levy
    • 27
  • V. Libov
    • 10
  • S. Limentani
    • 24
  • M. Lisovyi
    • 10
  • E. Lobodzinska
    • 10
  • W. Lohmann
    • 11
  • B. Löhr
    • 10
  • E. Lohrmann
    • 13
  • A. Longhin
    • 23
    • 51
  • D. Lontkovskyi
    • 10
  • O. Yu. Lukina
    • 20
  • J. Maeda
    • 28
    • 53
  • I. Makarenko
    • 10
  • J. Malka
    • 10
  • J. F. Martin
    • 31
  • S. Mergelmeyer
    • 3
  • F. Mohamad Idris
    • 6
    • 39
  • K. Mujkic
    • 10
    • 43
  • V. Myronenko
    • 10
  • K. Nagano
    • 14
  • A. Nigro
    • 26
  • T. Nobe
    • 28
  • D. Notz
    • 10
  • R. J. Nowak
    • 33
  • K. Olkiewicz
    • 7
  • Yu. Onishchuk
    • 17
  • E. Paul
    • 3
  • W. Perlanski
    • 33
  • H. Perrey
    • 10
  • N. S. Pokrovskiy
    • 15
  • A. S. Proskuryakov
    • 20
  • M. Przybycien
    • 8
  • A. Raval
    • 10
  • P. Roloff
    • 10
    • 44
  • I. Rubinsky
    • 10
  • M. Ruspa
    • 30
  • V. Samojlov
    • 15
  • D. H. Saxon
    • 12
  • M. Schioppa
    • 5
  • W. B. Schmidke
    • 21
    • 50
  • U. Schneekloth
    • 10
  • T. Schörner-Sadenius
    • 10
  • J. Schwartz
    • 18
  • L. M. Shcheglova
    • 20
  • R. Shehzadi
    • 3
    • 37
  • R. Shevchenko
    • 17
  • O. Shkola
    • 17
  • I. Singh
    • 4
    • 38
  • I. O. Skillicorn
    • 12
  • W. Slominski
    • 9
  • V. Sola
    • 13
  • A. Solano
    • 29
  • A. Spiridonov
    • 10
    • 45
  • L. Stanco
    • 23
  • N. Stefaniuk
    • 10
  • A. Stern
    • 27
  • T. P. Stewart
    • 31
  • P. Stopa
    • 7
  • J. Sztuk-Dambietz
    • 13
  • D. Szuba
    • 13
  • J. Szuba
    • 10
  • E. Tassi
    • 5
  • T. Temiraliev
    • 15
  • K. Tokushuku
    • 14
    • 47
  • J. Tomaszewska
    • 33
    • 55
  • A. Trofymov
    • 17
  • V. Trusov
    • 17
  • T. Tsurugai
    • 19
  • M. Turcato
    • 13
  • O. Turkot
    • 10
  • T. Tymieniecka
    • 34
  • A. Verbytskyi
    • 21
  • O. Viazlo
    • 17
  • R. Walczak
    • 22
  • W. A. T. Wan Abdullah
    • 6
  • K. Wichmann
    • 10
  • M. Wing
    • 32
  • G. Wolf
    • 10
  • S. Yamada
    • 14
  • Y. Yamazaki
    • 14
    • 48
  • N. Zakharchuk
    • 17
  • A. F. Żarnecki
    • 33
  • L. Zawiejski
    • 7
  • O. Zenaiev
    • 10
  • B. O. Zhautykov
    • 15
  • N. Zhmak
    • 16
  • D. S. Zotkin
    • 20
  1. 1.INFN BolognaBolognaItaly
  2. 2.University and INFN BolognaBolognaItaly
  3. 3.Physikalisches Institut der Universität BonnBonnGermany
  4. 4.Panjab University, Department of PhysicsChandigarhIndia
  5. 5.Calabria University, Physics Department and INFNCosenzaItaly
  6. 6.National Centre for Particle PhysicsUniversiti MalayaKuala LumpurMalaysia
  7. 7.The Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of SciencesKrakowPoland
  8. 8.AGH-University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
  9. 9.Department of PhysicsJagellonian UniversityCracowPoland
  10. 10.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  11. 11.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  12. 12.School of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom
  13. 13.Hamburg University, Institute of Experimental PhysicsHamburgGermany
  14. 14.Institute of Particle and Nuclear Studies, KEKTsukubaJapan
  15. 15.Institute of Physics and Technology of Ministry of Education and Science of KazakhstanAlmatyKazakhstan
  16. 16.Institute for Nuclear ResearchNational Academy of SciencesKyivUkraine
  17. 17.Department of Nuclear PhysicsNational Taras Shevchenko University of KyivKyivUkraine
  18. 18.Department of PhysicsMcGill UniversityMontréalCanada
  19. 19.Meiji Gakuin University, Faculty of General EducationYokohamaJapan
  20. 20.Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  21. 21.Max-Planck-Institut für PhysikMünchenGermany
  22. 22.Department of PhysicsUniversity of OxfordOxfordUnited Kingdom
  23. 23.INFN PadovaPadovaItaly
  24. 24.Dipartimento di Fisica dell’ Università and INFNPadovaItaly
  25. 25.Polytechnic UniversityTokyoJapan
  26. 26.Dipartimento di FisicaUniversità ‘La Sapienza’ and INFNRomeItaly
  27. 27.Raymond and Beverly Sackler Faculty of Exact Sciences, School of PhysicsTel Aviv UniversityTel AvivIsrael
  28. 28.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  29. 29.Università di Torino and INFNTorinoItaly
  30. 30.Università del Piemonte Orientale, Novara, and INFNTorinoItaly
  31. 31.Department of PhysicsUniversity of TorontoTorontoCanada
  32. 32.Physics and Astronomy DepartmentUniversity College LondonLondonUnited Kingdom
  33. 33.Faculty of PhysicsUniversity of WarsawWarsawPoland
  34. 34.National Centre for Nuclear ResearchWarsawPoland
  35. 35.Department of Particle Physics and AstrophysicsWeizmann InstituteRehovotIsrael
  36. 36.Department of PhysicsYork UniversityOntarioCanada
  37. 37.University of the PunjabLahorePakistan
  38. 38.Sri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  39. 39.Agensi Nuklear MalaysiaBangiMalaysia
  40. 40.Cracow University of Technology, Faculty of Physics, Mathematics and Applied Computer ScienceKrakówPoland
  41. 41.Rockefeller UniversityNew YorkUSA
  42. 42.University of LiverpoolLiverpoolUnited Kingdom
  43. 43.University College LondonLondonUK
  44. 44.CERNGenevaSwitzerland
  45. 45.Institute of Theoretical and Experimental PhysicsMoscowRussia
  46. 46.DESY and University of OxfordOxfordUK
  47. 47.University of TokyoTokyoJapan
  48. 48.Kobe UniversityKobeJapan
  49. 49.DESY ATLAS groupHamburgGermany
  50. 50.BNL, USAFoxboroughUSA
  51. 51.LNFFrascatiItaly
  52. 52.Max Planck Institute for PhysicsMunichGermany
  53. 53.Tokyo Metropolitan UniversityTokyoJapan
  54. 54.Lódz UniversityLódzPoland
  55. 55.Polish Air Force AcademyDeblinPoland

Personalised recommendations