Advertisement

Journal of High Energy Physics

, 2014:124 | Cite as

Higgs pair production via gluon fusion in the Two-Higgs-Doublet Model

  • Benoît Hespel
  • David López-Val
  • Eleni Vryonidou
Open Access
Article

Abstract

We study the production of Higgs boson pairs via gluon fusion at the LHC in the Two-Higgs-Doublet Model. We present predictions at NLO accuracy in QCD, matched to parton showers through the MC@NLO method. A dedicated reweighting technique is used to improve the NLO calculation upon the infinite top-mass limit. We perform our calculation within the MadGraph5 aMC@NLO framework, along with the 2HDM implementation based on the NLOCT package. The inclusion of the NLO corrections leads to large K-factors and significantly reduced theoretical uncertainties. We examine the seven 2HDM Higgs pair combinations using a number of representative 2HDM scenarios. We show how the model-specific features modify the Higgs pair total rates and distribution shapes, leading to trademark signatures of an extended Higgs sector.

Keywords

Higgs Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
  4. [4]
    CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, JHEP 05 (2014) 104 [CMS-HIG-13-004] [arXiv:1401.5041] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, Phys. Lett. B 726 (2013) 587 [CMS-HIG-13-006] [arXiv:1307.5515] [INSPIRE].ADSGoogle Scholar
  6. [6]
    CMS collaboration, Search for SM Higgs in WHWWW → 33ν, CMS-HIG-13-009 (2013).
  7. [7]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HZγ decay mode with pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, ATLAS-CONF-2013-009 (2013).
  8. [8]
    ATLAS collaboration, Search for a Standard Model Higgs boson in Hμμ decays with the ATLAS detector., ATLAS-CONF-2013-010 (2013).
  9. [9]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  10. [10]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  11. [11]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  14. [14]
    B. Stech, The mass of the Higgs boson in the trinification subgroup of E6, Phys. Rev. D 86 (2012) 055003 [arXiv:1206.4233] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Stech, Phenomenology of SU(3)L × SU(3)R × SU(3)C and the Higgs Boson, PoS(QFTHEP 2013)084.
  16. [16]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Burdman and C.E.F. Haluch, Two Higgs Doublets from Fermion Condensation, JHEP 12 (2011) 038 [arXiv:1109.3914] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  22. [22]
    I. Chakraborty and A. Kundu, Two-Higgs doublet models confront the naturalness problem, arXiv:1404.3038 [INSPIRE].
  23. [23]
    S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Tranberg and B. Wu, Cold Electroweak Baryogenesis in the Two Higgs-Doublet Model, JHEP 07 (2012) 087 [arXiv:1203.5012] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G.C. Dorsch, S.J. Huber and J.M. No, A strong electroweak phase transition in the 2HDM after LHC8, JHEP 10 (2013) 029 [arXiv:1305.6610] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.-O. Gong, H.M. Lee and S.K. Kang, Inflation and dark matter in two Higgs doublet models, JHEP 04 (2012) 128 [arXiv:1202.0288] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Aoki et al., Light Charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Chang, J.A. Evans and M.A. Luty, Possibility of early Higgs boson discovery in nonminimal Higgs sectors, Phys. Rev. D 84 (2011) 095030 [arXiv:1107.2398] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs Doublet Model in light of the Standard Model Hτ + τ search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Kanemura, K. Tsumura and H. Yokoya, Multi-τ lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D 85 (2012) 095001 [arXiv:1111.6089] [INSPIRE].ADSGoogle Scholar
  34. [34]
    W. Mader, J.-h. Park, G.M. Pruna, D. Stöckinger and A. Straessner, LHC Explores What LEP Hinted at: CP-Violating Type-I 2HDM, JHEP 09 (2012) 125 [arXiv:1205.2692] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Tsumura, Two Higgs doublet models at future colliders, arXiv:1305.1754 [INSPIRE].
  36. [36]
    R.V. Harlander, S. Liebler and T. Zirke, Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-Doublet Model, JHEP 02 (2014) 023 [arXiv:1307.8122] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. Stål, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model, arXiv:1312.5571 [INSPIRE].
  38. [38]
    E. Bagnaschi et al., Towards precise predictions for Higgs-boson production in the MSSM, JHEP 06 (2014) 167 [arXiv:1404.0327] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting non-minimal Higgs sectors, arXiv:1406.3294 [INSPIRE].
  40. [40]
    A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Efrati and Y. Nir, What if λ hhh ≠ 3m h2/v, arXiv:1401.0935 [INSPIRE].
  43. [43]
    E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev. D 82 (2010) 115002 [arXiv:1009.4670] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  45. [45]
    R. Contino et al., Anomalous Couplings in Double Higgs Production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G.D. Kribs and A. Martin, Enhanced di-Higgs Production through Light Colored Scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M.J. Dolan, C. Englert and M. Spannowsky, New Physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Gouzevitch et al., Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].ADSGoogle Scholar
  50. [50]
    V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].ADSGoogle Scholar
  51. [51]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].ADSGoogle Scholar
  52. [52]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2edSelecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Q. Li, Q.-S. Yan and X. Zhao, Higgs Pair Production: Improved Description by Matrix Element Matching, Phys. Rev. D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE].ADSGoogle Scholar
  60. [60]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSGoogle Scholar
  61. [61]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].Google Scholar
  62. [62]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC(8, 14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSGoogle Scholar
  63. [63]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].zbMATHADSGoogle Scholar
  64. [64]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, arXiv:1408.6542 [INSPIRE].
  65. [65]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  67. [67]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tan beta, Phys. Rev. D 74 (2006) 015018 [hep-ph/0602242] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
  69. [69]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Maalampi, J. Sirkka and I. Vilja, Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett. B 265 (1991) 371 [INSPIRE].ADSGoogle Scholar
  73. [73]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].ADSGoogle Scholar
  74. [74]
    P. Osland, P.N. Pandita and L. Selbuz, Trilinear Higgs couplings in the two Higgs doublet model with CP-violation, Phys. Rev. D 78 (2008) 015003 [arXiv:0802.0060] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C.-Y. Chen and S. Dawson, Exploring Two Higgs Doublet Models Through Higgs Production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].ADSGoogle Scholar
  78. [78]
    B.M. Kastening, Bounds from stability and symmetry breaking on parameters in the two Higgs doublet potential, hep-ph/9307224 [INSPIRE].
  79. [79]
    J. Velhinho, R. Santos and A. Barroso, Tree level vacuum stability in two Higgs doublet models, Phys. Lett. B 322 (1994) 213 [INSPIRE].ADSGoogle Scholar
  80. [80]
    S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999) 89 [hep-ph/9811234] [INSPIRE].ADSGoogle Scholar
  81. [81]
    P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].
  82. [82]
    M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].ADSGoogle Scholar
  83. [83]
    P.M. Ferreira and D.R.T. Jones, Bounds on scalar masses in two Higgs doublet models, JHEP 08 (2009) 069 [arXiv:0903.2856] [INSPIRE].ADSGoogle Scholar
  84. [84]
    D. Toussaint, Renormalization Effects From Superheavy Higgs Particles, Phys. Rev. D 18 (1978) 1626 [INSPIRE].ADSGoogle Scholar
  85. [85]
    J. Frere and J. Vermaseren, Radiative Corrections to Masses in the Standard Model With Two Scalar Doublets, Z. Phys. C 19 (1983) 63.ADSGoogle Scholar
  86. [86]
    S. Bertolini, Quantum Effects in a Two Higgs Doublet Model of the Electroweak Interactions, Nucl. Phys. B 272 (1986) 77 [INSPIRE].ADSGoogle Scholar
  87. [87]
    W. Hollik, Nonstandard Higgs Bosons in SU(2) × U(1) Radiative Corrections, Z. Phys. C 32 (1986) 291 [INSPIRE].ADSGoogle Scholar
  88. [88]
    W. Hollik, Radiative Corrections With Two Higgs Doublets at LEP/SLC and HERA, Z. Phys. C 37 (1988) 569 [INSPIRE].ADSGoogle Scholar
  89. [89]
    C.D. Froggatt, R.G. Moorhouse and I.G. Knowles, Leading radiative corrections in two scalar doublet models, Phys. Rev. D 45 (1992) 2471 [INSPIRE].ADSGoogle Scholar
  90. [90]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].ADSGoogle Scholar
  91. [91]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].ADSGoogle Scholar
  92. [92]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].ADSGoogle Scholar
  93. [93]
    M.J.G. Veltman, Second Threshold in Weak Interactions, Acta Phys. Polon. B 8 (1977) 475 [INSPIRE].Google Scholar
  94. [94]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSGoogle Scholar
  95. [95]
    ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, the SLD Electroweak, the Heavy Flavour Groups, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].
  96. [96]
    M. Baak et al., Updated Status of the Global Electroweak Fit and Constraints on New Physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].ADSGoogle Scholar
  97. [97]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  98. [98]
    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014).
  99. [99]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  100. [100]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  101. [101]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  102. [102]
    CMS collaboration, Higgs to ττ (MSSM), CMS-PAS-HIG-13-021 (2013).
  103. [103]
    CMS collaboration, Search for a heavy Higgs boson in the HZZ → 22ν channel in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-014 (2013).
  104. [104]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (*)ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
  105. [105]
    ATLAS collaboration, Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 02 (2013) 095 [arXiv:1211.6956] [INSPIRE].ADSGoogle Scholar
  106. [106]
    CMS collaboration, 2HDM scenario, Hhh and AZh, CMS-PAS-HIG-13-025 (2013).
  107. [107]
    ATLAS, CMS, CDF, D0 collaborations, R. Mankel, Higgs Searches Beyond the Standard Model, Int. J. Mod. Phys. Conf. Ser. 31 (2014) 1460288 [arXiv:1403.1788] [INSPIRE].Google Scholar
  108. [108]
    ATLAS collaboration, Search For Higgs Boson Pair Production in the gamma gamma b bbar Final State using pp Collision Data at \( \sqrt{s} \) = 8 TeV from the ATLAS Detector, arXiv:1406.5053 [INSPIRE].
  109. [109]
    CMS collaboration, Search for the resonant production of two Higgs bosons in the final state with two photons and two bottom quarks, CMS-PAS-HIG-13-032 (2014).
  110. [110]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  111. [111]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  112. [112]
    ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s} \) = 8 TeV with the ATLAS experiment, ATLAS-CONF-2013-090 (2013).
  113. [113]
    ALEPH, DELPHI, L3, OPAL, LEP collaborations, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].ADSGoogle Scholar
  114. [114]
    BaBar collaboration, B. Aubert et al., Measurement of the BX s γ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].ADSGoogle Scholar
  115. [115]
    S. Su and B. Thomas, The LHC Discovery Potential of a Leptophilic Higgs, Phys. Rev. D 79 (2009) 095014 [arXiv:0903.0667] [INSPIRE].ADSGoogle Scholar
  116. [116]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].ADSGoogle Scholar
  117. [117]
    F. Mahmoudi and T. Hurth, Flavour data constraints on new physics and SuperIso, PoS(ICHEP2012)324 [arXiv:1211.2796] [INSPIRE].
  118. [118]
    A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [INSPIRE].ADSGoogle Scholar
  119. [119]
    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g-2 from a generic pseudoscalar boson, Phys. Rev. D 63 (2001) 091301 [hep-ph/0009292] [INSPIRE].ADSGoogle Scholar
  120. [120]
    K. Cheung and O.C.W. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].ADSGoogle Scholar
  121. [121]
    P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].ADSGoogle Scholar
  122. [122]
    P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].ADSGoogle Scholar
  123. [123]
    A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: Implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].ADSGoogle Scholar
  124. [124]
    D.S.M. Alves, P.J. Fox and N.J. Weiner, Higgs Signals in a Type I 2HDM or with a Sister Higgs, arXiv:1207.5499 [INSPIRE].
  125. [125]
    H.S. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].ADSGoogle Scholar
  126. [126]
    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, General two Higgs doublet model (2HDM-G) and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].ADSGoogle Scholar
  127. [127]
    C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].ADSGoogle Scholar
  128. [128]
    B. Grinstein and P. Uttayarat, Carving Out Parameter Space in Type-II Two Higgs Doublets Model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].
  129. [129]
    M. Krawczyk, D. Sokolowska and B. SwieŻewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].ADSGoogle Scholar
  130. [130]
    A. Barroso, P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHCThe story so far, arXiv:1304.5225 [INSPIRE].
  131. [131]
    B. Coleppa, F. Kling and S. Su, Constraining Type II 2HDM in Light of LHC Higgs Searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].Google Scholar
  132. [132]
    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs Searches and Constraints on Two Higgs Doublet Models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].ADSGoogle Scholar
  133. [133]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  134. [134]
    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].ADSGoogle Scholar
  135. [135]
    W. Altmannshofer, S. Gori and G.D. Kribs, A Minimal Flavor Violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].ADSGoogle Scholar
  136. [136]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  137. [137]
    V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and Muon Collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].ADSGoogle Scholar
  138. [138]
    A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].ADSGoogle Scholar
  139. [139]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgcision in the Two-Higgs Doublet Models, JHEP 01 (2014) 085 [arXiv:1310.3937] [INSPIRE].Google Scholar
  140. [140]
    S. Chang et al., Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s} \) = 7 and 8 TeV, arXiv:1310.3374 [INSPIRE].
  141. [141]
    L. Wang and X.-F. Han, Status of the aligned two-Higgs-doublet model confronted with the Higgs data, JHEP 04 (2014) 128 [arXiv:1312.4759] [INSPIRE].ADSGoogle Scholar
  142. [142]
    X.-D. Cheng, Y.-D. Yang and X.-B. Yuan, Phenomenological discriminations of the Yukawa interactions in two-Higgs doublet models with Z 2 symmetry, arXiv:1401.6657 [INSPIRE].
  143. [143]
    B. Coleppa, F. Kling and S. Su, Exotic Decays Of A Heavy Neutral Higgs Through HZ/AZ Channel, arXiv:1404.1922 [INSPIRE].
  144. [144]
    J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev. D 72 (2005) 095002 [hep-ph/0506227] [INSPIRE].ADSGoogle Scholar
  145. [145]
    L. Randall, Two Higgs Models for Large Tan Beta and Heavy Second Higgs, JHEP 02 (2008) 084 [arXiv:0711.4360] [INSPIRE].ADSGoogle Scholar
  146. [146]
    H.E. Haber et al., SUSY QCD corrections to the MSSM h0 \( b\overline{b} \) vertex in the decoupling limit, Phys. Rev. D 63 (2001) 055004 [hep-ph/0007006] [INSPIRE].ADSGoogle Scholar
  147. [147]
    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].ADSGoogle Scholar
  148. [148]
    B. Dumont, J.F. Gunion, Y. Jiang and S. Kraml, Constraints on and future prospects for Two-Higgs-Doublet Models in light of the LHC Higgs signal, Phys. Rev. D 90 (2014) 035021 [arXiv:1405.3584] [INSPIRE].ADSGoogle Scholar
  149. [149]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSGoogle Scholar
  150. [150]
    A. Delgado, G. Nardini and M. Quirós, A Light Supersymmetric Higgs Sector Hidden by a Standard Model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].ADSGoogle Scholar
  151. [151]
    S. Kanemura, H. Yokoya and Y.-J. Zheng, Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider, Nucl. Phys. B 886 (2014) 524 [arXiv:1404.5835] [INSPIRE].ADSGoogle Scholar
  152. [152]
    D. Eriksson, J. Rathsman and O. Stål, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].zbMATHADSGoogle Scholar
  153. [153]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].zbMATHADSGoogle Scholar
  154. [154]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSGoogle Scholar
  155. [155]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK * gamma in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].zbMATHADSGoogle Scholar
  156. [156]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSGoogle Scholar
  157. [157]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSGoogle Scholar
  158. [158]
    O. Stål and T. Stefaniak, Constraining extended Higgs sectors with HiggsSignals, PoS(EPS-HEP 2013)314 [arXiv:1310.4039] [INSPIRE].
  159. [159]
    J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs Pair Production and Heavy Higgs Searches in the Two-Higgs-Doublet Model of Type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].ADSGoogle Scholar
  160. [160]
    A. Dobrovolskaya and V. Novikov, On heavy Higgs boson production, Z. Phys. C 52 (1991) 427 [INSPIRE].ADSGoogle Scholar
  161. [161]
    D.A. Dicus, K.J. Kallianpur and S.S.D. Willenbrock, Higgs Boson Pair Production in the Effective W Approximation, Phys. Lett. B 200 (1988) 187 [INSPIRE].ADSGoogle Scholar
  162. [162]
    A. Abbasabadi, W.W. Repko, D.A. Dicus and R. Vega, Single and Double Higgs Production by Gauge Boson Fusion, Phys. Lett. B 213 (1988) 386 [INSPIRE].ADSGoogle Scholar
  163. [163]
    A. Abbasabadi, W.W. Repko, D.A. Dicus and R. Vega, Comparison of Exact and Effective Gauge Boson Calculations for Gauge Boson Fusion Processes, Phys. Rev. D 38 (1988) 2770 [INSPIRE].ADSGoogle Scholar
  164. [164]
    O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].ADSGoogle Scholar
  165. [165]
    W.-Y. Keung, Double Higgs From W -W Fusion, Mod. Phys. Lett. A 2 (1987) 765 [INSPIRE].ADSGoogle Scholar
  166. [166]
    V.D. Barger, T. Han and R.J.N. Phillips, Double Higgs Boson Bremsstrahlung From W and Z Bosons at Supercolliders, Phys. Rev. D 38 (1988) 2766 [INSPIRE].ADSGoogle Scholar
  167. [167]
    E.W.N. Glover and J.J. van der Bij, Z-boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].ADSGoogle Scholar
  168. [168]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  169. [169]
    D.A. Dicus, C. Kao and S.S.D. Willenbrock, Higgs Boson Pair Production From Gluon Fusion, Phys. Lett. B 203 (1988) 457 [INSPIRE].ADSGoogle Scholar
  170. [170]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].ADSGoogle Scholar
  171. [171]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSGoogle Scholar
  172. [172]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].MathSciNetADSGoogle Scholar
  173. [173]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].ADSGoogle Scholar
  174. [174]
    P. Maierhöfer and A. Papaefstathiou, Higgs Boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].ADSGoogle Scholar
  175. [175]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].ADSGoogle Scholar
  176. [176]
    U. Ellwanger, Higgs pair production in the NMSSM at the LHC, JHEP 08 (2013) 077 [arXiv:1306.5541] [INSPIRE].ADSGoogle Scholar
  177. [177]
    D.T. Nhung, M. Mühlleitner, J. Streicher and K. Walz, Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM, JHEP 11 (2013) 181 [arXiv:1306.3926] [INSPIRE].ADSGoogle Scholar
  178. [178]
    A. Arhrib, R. Benbrik, R.B. Guedes and R. Santos, Search for a light fermiophobic Higgs boson produced via gluon fusion at Hadron Colliders, Phys. Rev. D 78 (2008) 075002 [arXiv:0805.1603] [INSPIRE].ADSGoogle Scholar
  179. [179]
    A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double Neutral Higgs production in the Two-Higgs doublet model at the LHC, JHEP 08 (2009) 035 [arXiv:0906.0387] [INSPIRE].ADSGoogle Scholar
  180. [180]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Top Partners and Higgs Boson Production, Phys. Rev. D 90 (2014) 035016 [arXiv:1406.3349] [INSPIRE].ADSGoogle Scholar
  181. [181]
    C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP 05 (2006) 074 [hep-ph/0509179] [INSPIRE].ADSGoogle Scholar
  182. [182]
    L. Wang, W. Wang, J.M. Yang and H. Zhang, Higgs-pair production in littlest Higgs model with T-parity, Phys. Rev. D 76 (2007) 017702 [arXiv:0705.3392] [INSPIRE].ADSGoogle Scholar
  183. [183]
    J.M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE].ADSGoogle Scholar
  184. [184]
    E.L. Berger, S.B. Giddings, H. Wang and H. Zhang, Higgs-flavon mixing and LHC phenomenology in a simplified model of broken flavor symmetry, arXiv:1406.6054 [INSPIRE].
  185. [185]
    R. Grober and M. Mühlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSGoogle Scholar
  186. [186]
    M. Gillioz, R. Grober, C. Grojean, M. Mühlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSGoogle Scholar
  187. [187]
    A. Krause, T. Plehn, M. Spira and P.M. Zerwas, Production of charged Higgs boson pairs in gluon-gluon collisions, Nucl. Phys. B 519 (1998) 85 [hep-ph/9707430] [INSPIRE].ADSGoogle Scholar
  188. [188]
    O. Brein and W. Hollik, Pair production of charged MSSM Higgs bosons by gluon fusion, Eur. Phys. J. C 13 (2000) 175 [hep-ph/9908529] [INSPIRE].ADSGoogle Scholar
  189. [189]
    A. Pierce, J. Thaler and L.-T. Wang, Disentangling Dimension Six Operators through Di-Higgs Boson Production, JHEP 05 (2007) 070 [hep-ph/0609049] [INSPIRE].ADSGoogle Scholar
  190. [190]
    J. Liu, X.-P. Wang and S.-h. Zhu, Discovering extra Higgs boson via pair production of the SM-like Higgs bosons, arXiv:1310.3634 [INSPIRE].
  191. [191]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].zbMATHADSGoogle Scholar
  192. [192]
    X. Li and M.B. Voloshin, Remarks on double Higgs boson production by gluon fusion at threshold, Phys. Rev. D 89 (2014) 013012 [arXiv:1311.5156] [INSPIRE].ADSGoogle Scholar
  193. [193]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  194. [194]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  195. [195]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  196. [196]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].ADSGoogle Scholar
  197. [197]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSGoogle Scholar
  198. [198]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSGoogle Scholar
  199. [199]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSGoogle Scholar
  200. [200]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSGoogle Scholar
  201. [201]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSGoogle Scholar
  202. [202]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].MathSciNetADSGoogle Scholar
  203. [203]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSGoogle Scholar
  204. [204]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSGoogle Scholar
  205. [205]
    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, arXiv:1406.3030 [INSPIRE].
  206. [206]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSGoogle Scholar
  207. [207]
    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSGoogle Scholar
  208. [208]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSGoogle Scholar
  209. [209]
    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSGoogle Scholar
  210. [210]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSGoogle Scholar
  211. [211]
  212. [212]
    J. Ohnemus and J.F. Owens, An order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
  213. [213]
    J. Ohnemus, An order-α s calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].ADSGoogle Scholar
  214. [214]
    J. Ohnemus, An order-α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  215. [215]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Benoît Hespel
    • 1
  • David López-Val
    • 1
  • Eleni Vryonidou
    • 1
  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations